|

Programming - User Support

Applications

I

issue Number 55 May / June 1992 US$3.95

Fuzzilogy 101
The Cyclic Redundancy Check in Forth

The Internetwork Protocol (IP)

Z-System Corner

Hardware Heaven

Real Computing

Remapping Disk Drives through the Virtual BIOS 24
The Bumbling Mathematician
YASMEM
ZBest Software

The Computer Corner

ISSN # 0748-9331

Now $4.> Stops The Clock
On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of
many popular GEnie®™ Service fea-
tures. For just S4.95 a month.
Choose from over 100 valuable serv-
ices including everything from elec-
tronic mail and stock closings to ex-
citing games and bulletin boards.
Nobody else gives you so much for
so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just S$6.00 per
non-prime hour for all baud rates
including 2400. That's less than
half of what some other services
charge. Plus with GEnie there's no

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors
of The Computer Journal! Enter “M 710" to join
the FIG group and “M 685" to join the CP/M and

Z-System group.

We'll meet you there!

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-
ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.

2. Dial toll free 1-800-638-8369.
Upon connection, enter HHH.

3. At the U#=prompt, enter
XTX99486,GENIE then press RE-
TURN

4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at
1-800-638-9636.

4)

JUST $4.95

Moneyback

Guarantee
Sign up now. If you're
not satisfied after using
GEnie for one month

Qe'll refund your $4.95J

*Applies only in U.S. Mon.-Fri., 6PM-8AM local time and all day Sat., Sun., and select holidays. Prime time hourly rates $18 up to 2400 baud. Some features subject to surcharge and may not be
avallable outside U.S. Prices and products listed as of Oct.1, 1880 subject to change. Telecommunications surcharges may apply. Guarantee limited to one per customer and applies only to first
month of use. GE Information Services, GEnie, 401 N. Washington Street, Rockville, MD 20850. © 1981 General Electric Company.

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Matt Mercaldo
Tim McDonough
Frank Sergeant
Brad Rodriguez
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is published|

six times a year by Socrates Press,
P.O. Box 12, S. Plainfield, NJ 07080.
(908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the respec-
tive authors and do not necessarily re-
flect those of the editorial staff or pub-
lisher.

Entire contents copyright © 1991
by The Computer Journal and respec-
tive authors. All rights reserved. Re-
production in any form prohibited with-
out express written permission of the
publisher.

Subscription ratese Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate). $24 one year, $44 two years,
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising inquires
to: The Computer Journal, P.O. Box
12, S. Plainfield, NJ 07080, telephone
(908) 755-6186.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The foliowing frequentty used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple Ii, ll+, lic, lle, Lisa, Macintosh, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder ii, Dos Disk; Plu*Perfect Systems. Clipper,
Nartucket; Nantucket, inc. dBase, dBASE II, dBASE Iil,
dBASE [Il Plus, dBASE |V; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro International. IBM-PC, XT, and AT, PC-DOS; 1BM
Corporation. 280, Z280; Zilog Corporation. Turbo Pas-
cal, Tubo C, Paradox; Borland International. HD64180;
Hitachi America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Joumal, they are acknowiedged to be the

property of the respective companies even if not spe-
cifically acknowledged in each occurrence.

Issue Number 55

EditOr’s DeSKcccooeemeeciireeniiireneerreecriesmssersesseasnsesessnns 2
Reader-to-Readercceevreeciiriirmennisnirencenceesseanannes 2
Fuzzilogy 101 ...ttt 3

What, precisely, do you think you‘re doing?
By Matt Mercaldo.

The Cyclic Redundancy Check in Forth 6
By Walter J. Rottenkolber.

The Internetwork Protocol (IP).........cccccecvvevvirrincann. 10
By Wayne Sung.

Z-System COMmerccccverrvnerreeernerenerssneeesaeessnnes 13
New Applications of Type-4 Programs
By Jay Sage.

Hardware Heaven........................ I trenmesenssnnnsroneseene 20

Trade Mags
By Paul Chidley.

Real Computing.......ccccvineininnininnnsnecsinninsesnnsennnnnes 22

Computers Get Caller ID, Programmers Get No Respect,
and Minix Gets a GUI
By Rick Rodman.

Remapping Disk Drives through the Virtual BIOS .24
By Roger Warren.

The Bumbling Mathematicianccccceruuuun.cen. 30

Big Numbers
By Frank C. Sergeant.

YASMEM........ooin et s s 33

(Yet Another Static Memory Expansion Module)
By Paul Chidley.

ZBest Softwarecceeeeceeerceerrcr e 39
By Bill Tishey.
The Computer COrnerccveemneiemncensscnssnnssanes 48
By Bill Kibler.

May / June 1992

Editor’s Desk

By Chris McEwen

-By necessity, my column in this issue is going to be very brief.
My health has not been good the last few months and L have spent
several weeks in the hospital. As a result, we have skipped the
March/ April issue and gone straight to May/June. You will not
lose an issue from your subscription, however, as the expirations
are set to issue number, not month.

Inthe meantime, please pardon me if the magazineis not right
on time over the next few months. It will take some time for my
health to fully recover. Your understanding is appreciated.

A new authorjoins us. Walter Rottenkolber discusses the cyclic

redundancy check and gives us Forth code forit. We alsowelcome
back Frank Sergeant with his Bumbling Mathematician.

Matt Mercaldo opens a topic we haven’t covered in a while:
fuzzy logic. I hope to see more on this. Lee Hart has expressed a
desire to write more on it.

Add in Paul Chidley’s work with the Z180 YASBEC and his
new column Hardware Hacker, Roger Warren's work with the
NZCOM virtual BIOS, Wayne Sung’s discussion of IPalong with
Bill Kibler, Jay Sage, Rick Rodman and Bill Tishey and I'd say we
have a pretty good way to spend a few evenings. Enjoy!®

Reader-to-Reader

I noticed afew things in my 6809 assembler article that should
be corrected:
a) The table of valid indexed addressing modes (p.8, first

column) shows “,—" as the “autodecrement by 2” mode
indicator; it should be “,--" (two minus signs). I think this
happened at your end.

b) The Forth fragment on page 12, for the word CODE, should
- read caeate HERE DUP 2- 1. The DUP was omitted from the
article.
¢) You neglected to mention that the source code for the
assembler is available on GEnie’s Forth Roundtable as
6809ASM.ZIP. (Tsk, tsk...shame on you.)
Also, here is an update on the Super8 article:

WAKE-UP:

The transmit wake-up bit works differently onrev 0and rev A
parts. The difference appears to be when the selected wake-up
value—asselected inbit 0of the UART Mode A (UMA) register—
is latched for transmit. It seems that the rev 0 parts have a 9-bit
transmit shift register, but only an 8-bit Transmit Holding register,
sothe transmitted wake-upbit depends on the value of the UMA
bit0_when_the_byte_is moved_from_the_holding_register to_
the__shift_register . Therev A partsseem to havea 9-bit Transmit
Holding Register, so the transmitted wake-up bit depends on the
valueof UMADit0_when_the byte_is written_to_the_Transmit_
_Holding_register (UIO). In other words, in the rev A parts you
must set UMA bit Obefore writing the character to UIO; in the rev
0 parts you must do likewise, but you must also leave UMA bit 0
set until the Transmit Buffer Empty signal becomes active.

the Forth Interest Group Roundtable software libraries on GEnie. And
hereisthebio paragraphthat wedidn't et to run on your Super8article:

Doug Fleenor is a microcomputer hardware & software specialist
serving the entertainment industry. He left the security of full time
employment in September 1990 to join the ranks of struggling (but
happy) independents. Doug’s current processor of choice is the Zilog
Super8, because “it does everything I need...for now”. His extensive
work on lighting control multiplex systems eamed him the nickname
Dr. Mux, which heacceptedin “yankeedoodle” style: he has been known
towearadoctor’s lab coat to industry trade shows, with an oscilloscope
probe around his neck. Doug can be reached at Doug Fleenor Design,
396 Corbett Canyon Rd., Arroyo Grande, CA 93420.

Brad Rodriguez is another veteran of the entertainment lighting
industry, whose infatuation with Forth and Forth-supporting proces-
sors is well known. Brad was introduced to the Zilog Super8 by Doug
Fleenor in 1987, and has been enamored of it ever since. Currently Brad
is putting thefinishing touches on a commercial Super8 Forth compiler,
and also on a Super8-based multiprocessor lighting control system. He
prefers to be contacted as BRODRIGUEZ2 on GEnie, but will accept
email as bradford@maccs.dcss.mcmaster.ca on the Internet, or paper
mail at T-Recursive Technology, 221 King St. E., Suite 32, Hamilton,
Ontario L8N 1B5 Canada.

Brad and Doug have collaborated on several Super8-based projects,
among them the Teatronics Producer 11+, Quantum, Comstar, MD2388,
and Echelon. Between them, Brad and Doug claim to have used every
function and feature of the Zilog Super8.@®

—Brad Rodriguez

Thanks for the note, Brad. You'reright, the
source for the 6809 assembler is available in

Letters to the editor and other readers are welcome. Submit to The Computer Journal, P.O.
Box 12, South Plainfield, NJ 07080-0012. Letters may also be electronically submitted via
GEnie™ to “TCJ$". Submission implies permission to publish your letter unless otherwise
stated. Letters may be edited as necessary.

The Computer Journal / #55

Fuzzilogy 101

What, precisely, do you think you’re doing? Fuzzy Logic may help.

By Matt Mercaldo

Fuzzy Logic! Whatis fuzzy logic? The Japanese seem to know.
They are using it in all types of commercial goods that once were
difficult to use. Now by the use of this technique of hardware and
program we can shake when video taping, get in focus when
filming, driveourcarseasierand withmore peace of mind and the
list continues to go on.

Fuzzy Logic! What is fuzzy logic? As program and hardware
scriveners we have to know. Is it just away to make programming
easier? Is it just “The right way of doing things that we've doneall
along anyhow”? Well, sort of.

Let’s first talk about fuzzy logicin terms of what it is and is not.
Fuzzy logic is not “crisp” logic. Crisp logic means that a square
peg will fitinasquare hole and a round peg will fitinaround hole
and that is the law of the land. For alot of applications, Crisplogic
is the right way of approaching the problem and has been for
years and years. When a specific combination of switches is set
(and notset) insome huge evolved automaton of the factory floor,
a crisp logic based system will find a rule which matches the
combination of the on’s and off’s. When the correct ruleis found,
the system will take the winning rule’s action. Crisp logic usually
has one winner and systems tend to become hierarchical (many
levels of if’s and then’s and else’s all nested togetherin the typical
complete and confusing construct).

Fuzzy logic is not fuzzy at all! Actually it is the essence of
structure; inan extensible sort of away. Systems using fuzzy logic
tend to make creation of a process control or like event driven
system old hat. With the proper fuzzy logic system creation tools,
complex process control systems can be constructed and simu-
lated in a very short time. Examples of this technique even exist
wherea fuzzy system can teachitself by adapting its membership
sets to a new environment (Membership sets will be explained
shortly). (This sort of thing is critical when the six legged explorer
you have spent bajillions of dollars creating needs to relearn how
towalk when it reaches the moon with the moon’s lower gravity!)

Fuzzy logic systems are not neural networks. Trust me on this
one! We do not have time to enter a treatise on Neural nets. Fuzzy
logic is closer to a production system (similar to that found inan
earlier article of my authorship on stepper motor control) than
neural nets.

Let us come up with a simple working definition for Fuzzy
Logic. Fuzzy logic is a technique of associating a degree of truth
to the relationship between a set of monitored data and a rule’s
antecedent. Unlike crisp logic, all rules participate in the output
result.

“Right!@#%!!!""” you say. Maybe a deeper look into an actual
example may help. “Johnny, If I've told you once I've told you a
thousand times!!! Some day you are going to break your head
openand I'll have to pick up the pieces!! Get off of the swings only
whentheswinghasstopped swinging—I mean completelystopped.”

Ah, the carefree days of childhood! The mother, in this little
remembrance, has laid down the law of the land in quite a crisp

Figure 1

Safe Not Safe

1
Degree of Membership
(When it is safe to jump!)

5

0

01234... Moonand other Planets

| <------ THETA >|

fashion. But later the day crawled onward for Mommy, and soon
she wished to go home and relax.

“Ok Johnny you can get off of the swing, It is slow enough for
youtoget off now”. Interesting! Slow Enough—notquitethecrisp
answer. If Johnny were driven by a PLC all sorts of interesting
things would happen. Good thing Johnny is just a red blooded
American boy. There’s the jump, and off the swing Johnny flies!

So is Mommy double talking? Well not really, actually she is
using fuzzy logic to make a decision as to the law of the land.
(Fuzzy Logic in the Practice of Law?..Hum) Let us get really
clinical about swings and pendulums. Swings are a lot like
pendulumsif youreally think about t. Thereisa distance from the
center point (Center point being where the law of the land said
Johnny could get off the swing the first time the law was spoken

forth), and there is a momentum or speed

Mafthew Mercaldoisemployed by a hugefirm. Withasmall group, hedevelopssoftware
tools for field service engineers to do their thing. At 4:30 or 5:00 p.m., when the whistle
blows, his thoughts race toward the edge. He dreams of articulated six legged walking
beasts, electronic brains that can fend for themselves, and the stuff of “U.S. Robots and
Mechanical Men.” Someday he dreams of running power out to his garage, and with his
wife and a select group of friends, opening his own automoton shop—and thus partially
fulfilling his childhood dreams. (Plutonium, Tritium and thelike are still not available for
public “consumption”, but seeing the moons of Jupiter would be spectacular in one’s own

starcruiser!)

The Computer Journal / #55

atwhich theswing is swinging (This must
be zero—noswinging—in the crisp law of
the land as laid down by the Queen of the
land; Mommy). We will call the angle of
the swing to the center point THETA, and
the momentum or speed of the swing
dTHETA. When Johnny is swinging with
allof hismight (inorder toreach the moon
orany near planet) his dTHETA is highest

when his THETA is lowest and likewise his d-THETA is lowest as
his THETA is highest. Gravity does wonders at keeping littleboys
feet on the Earth and swing fast and high and not necessarily all
atthe same time. We will use THETA to help the Queen determine
the Fuzzy law of the land, because the law of gravity will be in
magical proportion to the THETA and the law of the land.

We willassume THETA tobe feetbetween the center pointand
the seat of the swing. By careful judgment the Queen (Mommy)
has decided that when THETA is between one and two feet from
the centeritissafe forJohnny toget off of the swing. We couldeven
draw a little graph to illustrate this as you see in figure 1.

The careful reader will note that it is very safe to jump when
THETA is zero and the degree of membership in Safe is 1. The
reader will also note that it is not safe to jump when THETA is
three and the degree of membership of Safe is 0. So when Johnny's
THETA is 1 foot it is 50% safe tojump. As the speed increases from
1to2 THETA, jumping becomes more dangerous, moreexhilarat-
ing, and altogether more fun; Johnny wants to optimize hisexit for
a THETA of 1 foot, 11.99 inches. Johnny will still be within the
current limits of the law and having the most fun! This my friends
is the very essence of Fuzziology!

Let us make a simple fuzzy rule base for the laws of the
swinging within and without the limits of the law.

IF?

THETA IS? ZERO
THEN?

EXIT IS MOST_SAFE
END?

IF?

THETA IS? LOW
THEN?

EXIT IS MOST_EXHILARATING
END?

IF?

THETA IS? HIGH
THEN?

EXIT IS MOST DANGEROUS
END?

Well, ok. ZERO seems tangible enough, but what about LOW,
HIGH, and MOST_SAFE, MOST_EXHILARATING, and
MOST_DANGEROUS?... Anothergraph mayillustrate the point.
Each fuzzy term such as ZERO, LOW, and HIGH, has a set
associated with it. In high and scholarly mathematical circles this
means a function with long descriptive symbols and numbers
with meaningful descriptions attached. For the Hardware Hack
this means a lookup table. However and for whomever the
membership set is used, it determines an input’s degree of
membershipinthe given class. The output membership set canbe
eitheran output functionor what iscalled aSingleton. Asingleton
isa value that represents the desired non-fuzzied output. We will
investigate this more closely alittle later. Take a gander at Figure 2.

Inlight of the new set graphs let us look at the rules againand
think of how this would work in a system. First the THETA value
would be sampled, and held. Each rule antecedent would fire
with the new THETA value.

Let us make a little techie decision here: The value will be an
eight bit value for THETA. With this bit of coercion, we assume
that each membership set has been defined ina 256 byte table. Let
us assume that THETA when sampled was what would equivo-
cate 1.4 feet for THETA (somewhere around 7C in our 8 bit hex
understanding). :

RULE one’santecedent states [F? THETA [S? ZERO. The value
for 1.4 islooked up in the membership table for ZERO and found
to have a degree of membership of around 10%.

RULE two's antecedent states IF? THETA 15? LOW. The value
for 1.4is looked up in the membership table for LOW and found
to have a degree of membership of around 60%.

RULE three’s antecedent states IF? THETA 1S? HIGH. The
value for 1.4 is looked up in the membership table for HIGH and
found to have a degree of membership of around 0%.

The percent of membership are remembered for each anteced-
ent for each rule as the rule’s Fuzzy Output. Fuzzy Output is a
value thatindicatesa degree of truth fora rule’santecedent. Fuzzy
Output is an intermediary value between the portion of the rule
which declares a verdict and that portion of the rule which carries

Figure 2.

ZERO MEMBERSHIP SET MOST_SAFE MEMBERSHIP SET = 0.1

LOW MEMBERSHIP SET MOST EXHILARATING SET = 1.5

1] 1 2 3

HIGH MEMBERSHIP SET MOST_DANGEROUS SET = 3.0

Membership

outthejudgment. Infuzzy systemswith more thanoneantecedenal
component, the Fuzzy MIN rule is applied to the antecedents
subparts. The fuzzy min rule states that the lowest percent of
membership of the antecedent’s parts willbe the Fuzzy Outputor
degree of truth of the antecedent of the fuzzy rule under scrutiny.
The reader can think of the antecedent of a fuzzy rule as a chain.
Each antecedenal component is a link in the chain. Just as the
strength of the chain is determined by its weakest link, so the
degree of truth of a fuzzy rule is determined by the rule’s weakest
antecedenal component. The above processiscalled Fuzzification.

Afterthefuzzyoutputsare determined forall of the anticedenal
components, they work together to calculate a value for the
system output or system outputs. The process of getting a mean-
ingful output is called Defuzzification. A standard way of
defuzzifying is by the Center of Gravity defuzzification method.
Thefuzzified outputs are looked up in the output membership set
tables MOST_SAFE, MOST_EXHILARATING, and
MOST_DANGEROQUS or if Singletons are used, the singleton
values for MOST_SAFE, MOST_EXHILARATING and
MOST_DANGEROUSare used. Singletons are like a Tonesetting
on a stereo. A tone knob sets what the tonal quality of the stereo
willbe.Imagine the notches of HIGH, MEDIUM, and LOW on the
tone control as singletons. There are three positions given. Any
setting can be described in relationship to one of those settings. In
fuzzy rule systems, singletons are used as starting points to
determine the output, or in our example, the Tone level of the
stereo. Singletons working together with Fuzzy Outputs (used in
the center of gravity formula), determine a final setting that will
be within a system output’s allowable range of outputs. In the
tone control example, the system output will be the Tone setting
on the tone knob. The tone knob can only go so far to the LOW or

The Computer Journal / #55

to the HIGH. Also the output value may not necessarily be the
same as any singleton value either. Once again, The tone knob
may not find itself on LOW or MED or HIGH after all is fuzzily
inferred and done.

Ifoutputmembership sets are used the output membership set
takes a degree of truth and use it to look up or find aspecific value
in a range of values. In the above singleton example illustrated
withastereo’s tone control knob, output membership sets give us
anequalizer. Each membership set would equivocate afrequency
rangesslider. Assume thatinstead of three positionson atoneknob
we have an equalizer with three sliders adjusting each range of
HIGH, MEDIUM and LOW. The LOW slider would not have
values in the HIGH range and so on. The antecedents Fuzzy
Output value would “move” the slider within the Targeted range
of HIGH or MED or LOW as appropriate to the consequent of the
fuzzy rule. Note that the consequent of a fuzzy rule is specific to
an output and a range. In the above rules we see:

THEN? EXIT IS? MOST_SAFE

EXIT is the fuzzy output and MOST _SAFE qualifies the
output.

Ultimately we would getsomething very close to the singleton
value for that range. Output membership sets are kind of like a
fine tuning over Singletons just as an equalizer on astereolets the
audiophile adjust the stereo’s response more resolutely than a
tone control knob could. When an output memberships value is
ascertained though, itisused thesame asif it were asingleton. The
Singleton will be used in the below example for ease of explana-
tion.

For each consequent of each rule the fuzzy outputs (degree of
truth of the antecedent as captured in the Fuzzy Output variable
for each rule) will be combined with the Singleton or output
membership set value in the following center of gravity formula.

For each Fuzzy Rule do

ucts = (Si * Fi) +
FiSum = Fi 4+ FiSum

Where Fi is the fuzzy output value of the ith rule, where Si is the
Singleton value of the ith rule and where FiSumProducts is used
to hold the sum of Si * Fi accumulated over all of the fuzzy rules,
and FiSum is used to hold the sum of the fuzzy output values
accumulated over all of the fuzzy rules.

In our example the formula would look like the following
assuming singletons or output membership values of .1 for
MOST_SAFE, 1.5 for MOST_EXHILARATING, and 3 for
MOST _DANGEROUS.

L10(.3) + (.6)(1.5) + (0) (3}
.1+ .6+40

1.3 = System Output

It is a rare enterprise that can assume it will be
serving exactly the same market with the same
products in ten years time.

—Jesse Werner

The Computer Journal / #55

So 1.3 is the system output of EXIT which means that Johnny
will have a most exhilarating jump completely within the limits
of the]aw. We can see that ZERO's fuzzy result had an impact on
the output, that HIGH had no impact on the output and that MED
had the most impact on the output. Membership functions are
determined by an intuitive guess initially. The Queen of the land
inour swing example knew that when the swing was about two
feet from its centerpoint then the jump became dangerous for a
boy of Johnny’s size and weight. In a similar way an engineer
would determine the initial values for the membership set. The
membership set would then get “tweaked” into acceptable val-
ues. Our fearless Queen Mommy may see Johnny jump from a
THETA of three feet, see the excitement of her boy, and see that
maybe three feet wasn’t so bad and alter the membership sets
accordingly to allow safe jumping to include jumping from a
THETA of three feet. Yes, this can tend toward the more “black
magic” arts of our profession such as analog system designs if
attempted without the proper tools and simulation software.

This technique becomes more exciting when doing problems
where the output actually drives a motor or some like device in
servo applications (The infamous and almost classical inverted
pendulum problem). When viewed deeper Fuzzy logic opens
new doors to autonomous systems development. Code was
actually developed on the F68HC11 New Micros chip; but after
long contemplation it is the author’s belief that effective fuzzy
control will be better done by professional packages that support
custom ASCFuzzy controllerchips. If the general TGJreadership
wishes, | will writeananotherarticlearound the fuzzy production
system internals and tools that I have developed. @

UNIVERSAL MICROPROCESSOR

SIMULATOR/DEBUGGER V1.2

+ Simulates the Z80, 8051, 8085, 6811, 6809, 6805,
6801, 6800, 6502 & 65C02.

» Line Assembler and Disassembler.

* Accepts Binary code and Intel Hex code.

» Break facilities for simulation.

* Handles exceptions simulation.

* Includes batch file capability.

+ Utilizes your PC’s /O for MPU simulation.

* $65 for each set,

THE ROMY-8 EPROM EMULATOR

* Works with CPU simulator (Exclusive Feature).

* Lets you change and test code in seconds.

* Monitors address bus.

* Patch code with line-assembler.

» Emulates 2716-27256 EPROMs.

* Loads 32K of code in 20 seconds (PC/AT).

* 90 day warranty.

* Saves you money — only $140 (complete with one set
of CPU simulator).

J&M Software Hardware Design, Inc.
83 Seaman Road, West Orange, NJ 07052
TEL: 201-325-1892 FAX: 201-736-4567

The Cyclic Redundancy Check in Forth

By Walter J. Rottenkolber

This study of the Cyclic Redundancy Check (CRC) grew out of
adesire to upgrade my faithful modem program, a patchwork of
public domain and homespun 8080 assembly code. The thought
of tackling 128K of code daunted me and [decided to recast the
program, with enhancements, into Forth. Since the source code
of the few Forth modem programs I had dated way backand only
used the original checksum, this seemed the ideal time to review
CRC’s in general, to explore the algorithms available to calculate
the CRC, and to develop some useful Forth routines.

Isearched my library, and fortunately unearthed somearticles
written in the days when articles routinely included source code
(though notofteninForth). T. Ritter’s article proved most helpful,
though 1'd neverbefore considered Pascal tobe a write once, read
never language.

Intransferring data, achange of even one bit can result in great
problemsifthatdataisaprogram. The CyclicRedundancy Check
is designed to detect even minute changes (errors) in a block of
data after a transfer, especially burst errors shorter than the CRC
polynomial, and errors of three or less bits. The CRC will detect
99.998% of all errors, which is more than 460 times better than the
original xmodem checksum. Though it can’t correct the error, the
CRC can at least sound the alert, and perhaps even initiate a
retransmission of the data block.

How Does a CRC Do it?

The CRC works by concatenating all the data into one huge
number, and appendinga number of zeros to theend equal to one
less than the degree of the CRC polynomial. Itis then divided by
the CRC polynomial using modulo-2 (exclusive-or) arithmetic.
The quotient is thrown away and the remainder kept as the CRC
value. The CRC polynomial, itself, is a number specially selected
to provide (hopefully) unique remainder values.

A polynomial is an algebraic expression of the form

ax"n + ax"n-1 + ... + ax*1 + ax*0
and it describes the class of algebraic numbers, to which the
integersbelong. Note that the power(n) begins with zeroand goes
to n, the degree of the polynomial.

By substituting the radix (number base) for the x, and a
number from 0 to x-1 for the ‘a’, an integer is generated. For
example, the decimal number:

2*10"3 + 5*10%2 + 7+*10"1 + 3*10%0 =
2*1000 + 5*100 + 7*10 + 3*1 =
2000 + 500 + 70 + 3 = 2573

Several polynomials are known and used (see Table 1) to deal
with different size data blocks. The maximum block size a
polynomial can accurately handle is given by: (2"n-1)-1. Fora
CRC of 16 degrees, this works out to (2"15)-1 bits, or 4095 bytes.

Larger blocks require larger polynomials, and this is why Z-
Modem uses a 32 bit CRC.

The polynomial used by XModem, XModem-1K,and YModem,
is the well-known CCITT CRC polynomial: x*16 + x*12 + x5 +
1. It's a bit hard to visualize, because this is actually a cryptic
summary that only notes the non-zero values in abinary number.
But if we flesh it out with nulls, we get:

1 0001 0000 0010 0001

[f you kept your eye on the ball, you will notice thata CRC-16
has 17bits. So how do we handle the division simply, in real time,
witha CPU having 16 bit registers? Easier than you think, thanks
to the fact that CRC is the remainder, and the quotient is thrown
away.

Lit's walk through a simplified CRC calculation as using a
four bit polynomial to generate a three bit CRC:

100010
1001 | 100110000
1001
0001
0000
0010
0000
0100
0000
1000
1001
0010
0000
010 = CRC

Note that the dividend is XOR’d with the polynomial only
whena datasegment has a one in the most significant bit (MSBit),
and thatthisbitin the remainderisalways reset tozeroin the XOR.
Since all we need is the remainder, the MSBit of the accumulating
datacanbe used as aflag toindicate when to XOR, allowing us to
eliminate the MSBit of the polynomial from the calculation.

Using thebitshift method with the same 3-bit CRC, 2 3-bitdata,
and an abbreviated polynomial we get:

100 110 000
<-—- [1] 001 100 00

001 XOR

000 100 00
<—-— [0] 001 000 0
<--- [0] 010 000

<--- {0) 100 00

<-—-- [1] 000 O
001 XOR
001 0

<——- [0] 010 = CRC

The Computer Journal / #55

Screen 1 Screen 5
.\ CRC-16 Load Screen WJIR14NOV91 .\ CRC-16 Byte Shift Method #2 - Hi-Level WJIR11NOV91
ONLY FORTH ALSO FORTH DEFINITIONS HEX
: BYTE2-CRC1l6é (data-byte —)
DECIMAL CRCVAL @
DUP FF00 AND U2/ U2/ U2/ U2/ FFOO AND XOR
VARIABLE CRCVAL DUP FFO00 AND DUP 2* 2+ 2* 2»
SWAP U2/ U2/ u2/ (data oldCRC tmpll tmpl2)
2 13 THRU XOR SWAP FLIP XOR XOR CRCVAL 1 ;
DECIMAL
INIT-CRCTBL
TADR @ 1500 ASCII F FILL (test data)
TBIT1
Screen 2 Screen 6
.\ CRC-16 Bit Shift Method #1 — Low Level WJIR11NOV9]1 .\ CRC-16 Byte Shift Method #3 — Lo-Level WIROSNOVS1
HEX HEX
CODE (BITCRC16) (data-byte old-crc — new-crc) CODE (BYTE3-CRC16) (data-byte old-crc — new-crc)
HPOP DPOP B PUSH 8 B LXI DPOP HPOP B PUSH H PUSH 0 H LXI icMn
BEGIN D A MOV FO ANI RRC RRC RRC RRC D XRA A D MOV
E A MOV RLC A E MOV L A MOV OF ANI RIC RIL RILC RIC E XRA A E MOV D H MOV
RAL A L MOV H A MOV RAL A H MOV BEGIN
cs IF H A MOV 10 XRI A H MOV A ORA H A MOV RAR A H MOV L A MOV
LAMOV 21 XRI AL MOV THEN RAR A LMW CDCR 0=
C DCR 0= UNTIL
UNTIL B POP HPUSH JMP C; E A MOV H XRA A H MOV D A MOV L XRA
DECIMAL B POP C XRA A L MOV B POP HPUSH JIMP C;
DECIMAL
: BIT1-CRC16 (data-byte —)
CRCVAL @ (BITCRC16) CRCVAL | ; : BYTE3-CRC16 (data-byte —)
CRCVAL @ (BYTE3-CRC16) CRCVAL | ;
Screen 3 Screen 7
.\ CRC-16 Bit Shift Method #2 — High Level WJIR11NOVI1 .\ CRC-16 Table Lookup Method #1 (1 of 2) WJIR11NOVS1
HEX : CELLS (n— n*2) 2+ ;
: BIT2-CRCl6é (data-byte —)
FLIP CRCVAL € 8 0 DO CREATE CRCTBL (—) 256 CELLS ALLOT
DUP 0< >R 2* OVER 0< IF 1+ THEN \ : CRCTBL (—) PAD 200 + ;
R> IF 1021 XOR THEN SWAP 2* SWAP
LOOP CRCVAL ! DROP ; HEX
DECIMAL : (CRCl6) (data-byte crc-index — crc-template)
FLIP 8 0 DO
DUP 0< >R 2* OVER 0< IF 1+ THEN
R> IF 1021 XOR THEN SWAP 2* SWAP LOOP
NIP ;
DECIMAL
Screen 4 Screen 8
.\ CRC-16 Byte Shift Method #1 — Hi-level WJIRO7NOVI1 .\ CRC-16 Table Lookup Method #1 (2 of 2) WJIR11NOVI1
HEX s INIT-CRCTBL (—)
: BYTE1-CRCl6é (data-byte —) CRCTBL 256 CELLS ERASE
CRCVAL € FLIP 256 0 DO
DUP OFF BAND U2/ U2/ U2/ U2/ XOR 0 I (CRC16) I CELLS CRCTBL + !
DUP OFF AND LOOP ;
DUP 2* 2+ 2* 2+ OFF AND FLIP
SWAP 2% 2% 2+ 2% 2% HEX
(data o©ldCRC tmpll templ2) : TBL1-CRCl6 (data-byte —)
XOR XOR XOR CRCVAL ! ; CRCVAL € FLIP DUP OFF AND 2*
DECIMAL CRCTBL + @ ROT XOR SWAP
FFCO AND XOR CRCVAL ! ;
DECIMAL

The data is shifted a bit at a time into the CRC register MSBit
first, while at the same time the MSBit of the CRC is shifted into
thecarry flag [x]. If the carry flag is set, the CRCis XOR’d with the
shortened polynomial number, otherwise just the shift is done.
The CRC ends up the same. Note that the pattern of the carrys,
reading from top down is the same as quotient in the prior
example.

The Computer Journal / #55

The CRC as done in Modem 7 is a three step process. First the
CRCregisteris reset to zero. Next the datablock is fed through the
CRC generating routine. Finally, on send, null data the size of the
CRCdata type (16bits) is fed through. The value remaining in the
CRC register is then tacked onto the end of the data block.

On receive, the same procedure is done, except that at the end
of the datablock, itis the CRCbytes thatare fed through. Ifall goes
well, the value in the CRC register ends up as zero.

Although this CRC is a standard, it is not perfect. It is not
compatible with hardware generated CRC's because the data is
passed to the CRC routine beginning with the MSBit. Normally,
serial data is sent least significant bit (LSBit) first, and processed

Table 1

DDCMP, BSC, (EBCDIC)
SDIC, HDIC, CCITT
ATT, Dig.

BSC (transcode)
Ethernet/IEEE 802

CRC Polynaomials

X*16 + X*15 + X*2 +

X"16 + X"12 + X5 +

X*6 + X + 1

X"12 + X"11 + X"3 + X"2 + X + 1

X"32 + X"26 + X"23 + X"22 + X"16 +
X*12 + X"11 + X*10 + X"8 + X*7 +
X*5 + X4 + X2 +X+1

1
1

by the hardware in that order. Also the use of nulls to begin and
end the CRC reduces theability to detect extraneousleading nulls,
or errors in long strings of null data.

For this reason, the SDLC, HDLC, and CCITT synchronous
protocols use a variant of the CRC, the Frame Check Sequence
(FCS). Thisbegins with the FCS register set toones. The data is fed
in LSBit first using routines otherwise similar to that for the
Modem-7 CRC, including the same polynomial. At the end, the
FCS register is flushed by entering data composed of ones. The
resulting checksum value is then ones-complemented before
being transmitted. The receive process is similar except thatat the
end, the checksum is fed in. The error-free remainder isa non-zero
constant, whose value depends not on the data, but on the
polynomial used. (Or somy references say. But when | tried it out
the error-free remainder was zero, just as with the CRC.)

However, don’t panic! Line noise still causes most of my
modem transmission problems. This tends to generate ones, not
nulls, and tochange theblock length toboot. Whatever defects the
Modem-7 CRC has in theory don’t seem to show up in the real
world.

A Cornucopia of CRCs

" Screens 2-9 show three different methods of generating the
Modem-7 CRC's—bit-shift, byte-shift, and table lookup. Both
high level Forth and assembly versions are given. Screens 10-12
provide words to test and compare CRC routines.

In the bit-shift and byte-shift assembler routines, the BC
Register is saved early on and later restored. Don’t change this in
a misbegotten attempt to increase speed. In the CP/M version of
Forth-83, the BC Register holds the Interpretive Pointer (IP),
which refers to the parameter field of the currently executing
Forth word. If you trash this register, you trash the system. So
assembly routines that use the BC Register must also preserve and
restore its contents.

The Bit Shift CRC

The bit-shift CRC method is a scaled up version of the second
example given. The assembly versionis just a Forth translation of
the original Modem-7 assembly code. Dataisshifted into the CRC
register through the carry-bit. The operating scheme is shift, test,
and ?XOR with the polynomial (1021 hex). The high level version
is less elegant because there is no ready way to test the carry-bit.
Soit checks if the MSBit is a one with 0<, since negative numbers
have the MSBit set. The method here is to test first, save the flag,
shift, and then 2XOR. The data bit also has to be ‘shifted’ into the
CRC indirectly.

The Byte-shift CRC

The byte-shift method is more properly called the bit-block
shift method. As the bits are shifted out of the CRC register, the
MSBit acts as atrigger to activate the XOR at the other polynomial
XOR points. So the bits to the left of a polynomial pointbehave as
a pattern for those bits located to the right of it.

[1] 10011101 01010011
o A . * — Polynomial XOR Points

We can take this block of bits left of a polynomial point, and
XOR the effected bitblock to the right of it. Of course it has to be
done for each point, and that is where the algorithm gets tricky.

The following is what happens with BYTE2-CRC16.

10011101 01010011 old CRC
1001 FFOO0 AND, SHR*4, FF00 AND
XOR
10010100 01010011

+-~—— 0010100 00000000 FFOO AND, DUP

SHR*4 mask#1

| 10010100 00000000 <--+

|
|
I
|
[10010 100 SHL*3 mask#2
| +> 0100 XOR

! 01010010 10000000 XOR-template
I

+---- 01010011 10010100 flipped old CRC

00000001 00010100 XOR
00000000 01101110 data XOR

00000001 01111010 new CRC

Consider what happens as the CRC shifts to the left and the
databyteis fed in. As the leftmost fourbits (nibble) exits, the next
nibble passes by the XOR point at Bit-12. For every ‘1’ in the first
nibble, a correspondingbit in the second nibble is XOR'd. Instead
of proceeding a bit at a time, we could accomplish the same
changes if we take the first nibble, shift it under the second nibble,
and use it as a mask to XOR the bits as a block.

Since four more bits get shifted, we need to repeat this proce-
dure with thesecond and third nibble, but for the moment we just
shift the nibble to form mask#1, and hold it.

Now as the eightbits in the MSB shift out, the XOR pointat Bit-
5will effect the fivebits to the left of it as well as the first three bits
of the data. By shifting the MSB three bits to the left, we geta XOR
mask spread over two bytes (mask#2) that reflects the changes
that would occur. The two masks are XOR'd to form an XOR
template.

Lastly we need to consider what happens to the data as it
passes the XOR pointat Bit-0. Since everybit in the MSBeffects the
data, the entire MSB is the mask for the data. Moreover, after the
shift, the LSB of the old-CRC must end up as the MSB of the new-
CRC. The easiest way to get these twobytes in their proper order
is by flipping them. The XOR template is already properly
positioned.

So you now have a sandwich of XOR template, flipped old
CRC, and data-byte. When these are all XOR'd together you get
the new-CRC.

Like a camel, this algorithm looks strange but it works.

The two CRC methods just discussed used Forth words for
binary shifts. The shift left (2*) is straight forward, and is accom-
plished not by using the bitshift opcodes, but by simply adding
the number to itself. This is an old assembler trick that does the
same thing but is actually faster. The shift right is more compli-
cated as there are two of them. The first (2/) is the arithmetic shift

The Computer Journal / #55

Screen 9
.\ CRC-16 Table Lookup Method #2 WIR11NOVI1

CODE (TBL2-CRC16) (data-byte old-crc crctbl — new-crc)

Screen 11
.\ CRC-16 Test (2 of 3) WJRO2NOV91

VARIABLE GENVAL VARIABLE #DATABYTES VARIABLE TADR

DEFER UPDCRC

: CLRCRC (-) O CRCVAL ! ;

: FINC(RC (-) O UPDCRC 0 UPDCRC ;

: TKERM (—) [’] KERMIT-CRC16 IS UPDCRC ;
: TBITL (-) ['] BITI-CRC16 IS UPDCRC ;
: TBIT2 (—) [‘]} BIT2-CRC16 IS UPDCRC ;
: TBYTEL (—) (‘] BYTE1-CRC16 IS UPDCRC ;
: TBYTE2 (—) {'] BYTE2-CRC16 IS UPDCRC ;
: TBYTE3 (—) [']) BYTE3-CRC16 IS UPDCRC ;
: TTBLL (—) [’] TBL1-CRC16 IS UPDCRC ;
: TTBL2 (—) [‘] TBL2-CRC16 IS UPDCRC ;

HPOP DPOP EAMOV DEMOWV 0DMI PAD 1000 + TADR ! 1024 #DATABYTES !
DDAD DDAD ME MOV H INX M D MOW
D XRA A H MOV E A MOV D POP E XRA s CAICRC (—)
A L MOV HPUSH JMP C; TADR € #DATABYTES € BOUNDS DO I C@ UPDCRC LOOP ;
¢+ TBL2-CRC16 (data-byte —) t GENCRC (—)
CRCVAL @ CRCTBL (TBL2-CRC16) CRCVAL 1! ; CLRCRC CALCRC FINCRC CRCVAL @ GENVAL ! ;
t CHKCRC (-)
CLRCRC CALCRC GENVAL 1+ C@ UPDCRC GENVAL C@ UPDCRC
CRCVAL @ GENVAL @ OVER
U. U. ABORT” Check CRC Not Zero “ ;
Screen 10 Screen 12
«\ CRC-16 Test (1 of 3) WJIR14NOVI1 .\ CRC-16 Test (3 of 3) WJIR14NOVI1

VARIABLE #BLKS 10 #BIXS ! VARIABLE DCH 70 DCH !
t CALOLOOP

TADR @ #DATABYTES € BOUNDS DO I C@ DROP LOOP ;

s OLOOP (—)
CRCVAL OFF #BILXS @ O DO CALOLOOP LOOP BEEP ;

t TCRC (—)
CRCVAL OFF #BLKS @ 0 DO CALCRC LOCP
CRCVAL @ U. BEEP ;

:+ ITB (—) TADR @ 1500 DCH & FILL ;

and is used withsigned integers. As the numbers are shifted right
it copies the MSBit, which preserves the sign of the number, e.g.
100111102/ becomes 11001111, not 01001111. The second (U2/)is
the logical shift and is used with unsigned integers. As the bits
shift right, the MSBit s set to zero. It'samazing how obscureabug
can be if you mix up these two right shifts.

The Table Look-up CRC

The table lookup method makes use of the fact that the most
significant byte merely acts as a trigger for the CRC polynomial,
and is then discarded. Therefore, this byte uniquely defines what
happens to the least significant byte and the data byte. If we set
these latter bytes to zero and calculate a CRC, we form an XOR
template that can be used to generate the new CRC.

First you must set up a table of 256 templates calculated on a
most significant byte incremented from 0 to 255, and using this
byte as an index into the template table.

-+ + +
+ + * t

| Generate CRC for Table

To calculate the new-CRC, you use the MSB of the old-CRCas
anindex into the CRC Table and get the template. Then XOR the
LSB of the old-CRC with the MSB of the template, and the data
byte with the LSB of the template. Voila! Instant new-CRC.

(index) LSB - 0ld-CRC
MSB LSB - template
LSB-old CRC data byte - XOR
MSB LSB -— new=-CRC

CRC How They Run

Screens 10-12 providewords totest the CRCs.I made UPDCRC
a deferred word so that the switching from one CRC method to
another is easy. TBIT1 switches in BIT1-CRC16 into the test suite,
and the remainder of the list does the same for the other CRCs.

The Computer Journal / #55

To check the accuracy of the CRC, 1 used GENCRC and
CHKCRC. GENCRCacts asasend routine and generates the CRC
from data placed at TADR. CHKCRCbehaves as a receive routine
and calculates a CRC from the data and the check sum passed in
GENVAL. The two CRC values calculated are then displayed,
along with any error messages. The CRCVAL from CHKCRC has
to be zero, or you have a problem.

Time tests are done by TCRC. This does a CRC on several
blocks so that a reasonable time elapses for accuracy with hand
timing (my Kaypro has nointernal clock). I began with #BLKS set
at 10 to get a rough estimate, and then increased it to 30 to detect
finer differences in performance. Since some time is taken up by

Table 2 CRC-16 Tests

Bitl 0.29 0.036 3,531 1.45
Bit2 3.50 0.44 293 17.47
Bytel 0.81 0.10 1,264 4.05
Byte2 0.79 0.099 1,296 3.95
Byte3 0.22 0.028 4,655 1.10
Tbll 0.47 0.059 2,178 2.35
Tbl2 0.20 0.025 5,120 1.00

theloopitself, OILOOP definesanull loop whose timeis subtracted
from the raw CRC times. This allows for more accurate compari-
sons among the CRC methods.

DCH contains the data used by ITB to fill the block pointed to
by TADR.If you want more random data, you can point TADR to
the Forth system and do a CRC on parts of it instead.

I performed the time tests of the CRC routines on my 5 MHz.
Kayproll, and summarized them in Table 2. Realize, though, that
the speed of the routine is not the speed of the file transfer
program, but it does give you astarting point for program design.

The table lookup method proved fastest of the group in both

the high level and assembler versions. The only disadvantage is
gee CRC, page 12

The Internetwork Protocol (IP)

By Wayne Sung

There is a very large and well-connected data network which
covers nearly thirty countries and encompasses tens, perhaps
hundreds, of thousands of computers. This network is called The
Internct.

The Internetwork Protocol, commonly called IB, is perhaps the
most popular protocol in wide-area networking. It also functions
quite well in local area networks. It has been used in amateur
packetradionetworks atspeeds of 1200bpsand insupercomputer
networks up to hundreds of megabits per second, without modi-
fication.

“an IP implementation should be
conservative in what it sends, liberal
in what it receives.”

There are several advantages to using IP rather than another
protocol. The most important of these is that [P is not owned by
any one company. It was developed by the US Department of
Defense and therefore belongs to all taxpayers. This means any
company is free to implement IP. It also means that there are
several implementations that canbe considered reference models
against which a new one can be tested.

IP was designed specifically for survivability. Although this
was originally meant to insure communications in battle situa-
tions, the robustness built into IP makes it particularly able to
handle poorly designed networks. Forexample, thereisarule that
an IP implementation should be conservative in what it sends,
liberal in what it receives.

This means: do as good a job as possible in making your
implementation correct, but try to process incoming packets even
if they areslightly malformed. This robustness principle has often
been neglected, particularly in local area network situations,
because the environment is so sterile compared to what IP was
designed for originally.

I have noted earlier that all networks tend to get bigger with
time. Starting withawell-built IP means that no software changes
will be necessary when the network expands.

I will notattempt to describe everything there is toknow about
IP here. Entire textbooks have been written for that purpose. In
particular, IP is normally used with other protocols, and indeed
may havestarted the whole idea of layered protocols. These other

protocols provide functions beyond what IP itself provides,
which is primarily addressing.

A minimum IP header is 20 bytes long, of which 11 bytes are
involved in addressing. It has been said that IP was not designed
by committee, and thereforeall the fieldsin the headerareactually
necessary. This is certainly true in the minimum header, which is
used in by far the majority of situations.

Every IP-capable machine has at least one IPaddress, whichis
a 32-bit integer. The way this address is interpreted is what
distinguishes IP’s wide-area capabilities from other protocols.
The most significant bits of the IP address are called the Network
Number, and the other bits the Host Number. The exact division
point depends on three classes of addresses: A, B, and C.

Class A networksare considered ‘big’ networksand have eight
bitsof network number followed by 24 bits of host number. Class
B networks are considered ‘medium’ size and have 16 bitseach of
network and host number. Class C networks are considered
‘small’ and have 24 bits of network number and eight bits of host
number.

The size designation is based only on the address space
available for host addresses, not how large an organization might
be. For example, a company that supplies communication ser-
vices might have switches located throughout the country. There
might be hundreds of these switches, making it easier to use one

“Often a company will bring up a
network with an arbitrary network
number only to find that when they
have to connect to the Internet
everything has to be renumbered.”

class B network rather than several class C networks. The com-
pany itself might not be very large at all.

All IP network numbers are assigned by the Defense Data
Network’s Network Information Center, commonly called the
NIC. An organization with requirements for IP networking re-
quests one or more network number assignments from the NIC.
This registration process is what guarantees IP internetworking,
because IP packets are switched from one place to another based

on the network addresses.

Wayne Sung has been working with microprocessor hardware and software for over
ten years. His job involves pushing the limits of networking hardware in attempting to
gain as much performance as possible. In the last three years he has developed the Gag-
a-matic series of testers, which are meant to see if manufacturers meet their specs.

10

Often a company will bring up a net-
work with an arbitrary network number
only to find that when they have to con-
nect to the Internet everything has to be

renumbered. This is why companies

The Computer Journal / #55

should consider applying for anetwork numberassignment even
if they have no immediate plans to connect to the Internet.

To make the 32-bit number a little easier to handle, it is
expressed in ‘erms of four eight-bit numbers. Thus Internet
addresses are generally seen in the form W.X.Y.Z, where each of
W, X, Y, Z takes on values from 0 to 255. The class distinctions fall
on eight-bit boundaries. Class A networks use only W for the
network number; class B networks use W.X, and class C networks
~use WXY.

“Some systems have exploited the
ability of Ethernet controllers to be
given a user-defined address”

Class A networks have numbers in the range 1 to 126. The
values 0 and 127 are reserved for special functions. Class B
networks have W values in the range 1280 191. Class C networks
use W values starting at 192. Notice that since class B networks
have 16 bits of network address, there can be many more class B
addresses than class A addresses. Similarly, since class C has 24
bits of network address, there canbe many more class C addresses
than class B.

When a network address is assigned, the network portion is
filled out for you and the host fields are zeroes. Thus 10.0.0.0 is
called Net 10, and 128.1.0.0 is called Net 128.1 (this also shows
why a host should not be numbered 0, because this could be
confused with the network number).

Certain network numbers are special cases and will not be
assigned to anyone. For example, the address 255.255.255.255 is
considered abroadcast just as the Ethernetbroadcast addressis all
. ones. Net 127 is called the ‘loopback’ network and is used

internally by many [P implementations. There are also host

numbers which should not be assigned. The address on any

network whichis all ones is also considered abroadcast, so a host
" should not be assigned that address.

Incomparison, when youand I eachbuy an Ethernet controller
from a certain company, the controllers will have 48 bit Ethernet
addresses which would seem to be usable for routing purposes.
The reason they are not is that there is no guarantee that each
controller’s address falls in a particular range. If we both went to
the store on the same day, the addresses might very well be
adjacent.

Without a part of the address guaranteed to be distinct across
organizations, routers cannot be used. In essence, the Ethernet
address is a degenerate case of routing where only the entire
address can be guaranteed unique. This also means that the only
way to send messages is by the entire Ethernet address, limiting
the application to one Ethernet.

Somesystems have exploited theability of Ethernet controllers
to be given a user-defined address by programming addresses
with more carefully defined network and host portions. Without
a central address authority, however, there is still no guarantee
that any two companies can connect together. Each may have
chosen the same network portion, because many people set up
computers using the default supplied by the manufacturer.

Thus 8 bytes of an P header are the source and destination IP
addresses. Every IP packet is considered distinct from every
other, and normally routers treat them that way. However, there
is a sequence number (16 bits) in each IP packet. The sequence
number does not imply that any packet is related to any otheg but

The Computer Journal / #55

does supply an additional value which may be used for identifi-
cation purposes.

Itis also possible that two hosts may be sending IP packets to
each other, but for different reasons. There is an eight bit number
called the protocol field which identifies what higher- layer
protocol is being used in this particular packet.

The remaining ninebytes of aminimum header include things
such as a checksum (which applies to the header only), a total
message length (which applies to the IP message itself and does
not include the Ethernet overhead) and other control functions
(which are usually not used).

Since IP systems are well-connected, many point-to-point
applications are being moved from dedicated lines to using IPas
a universal transport. The protocol field of IP makes this quite
simple. Note that protocol numbers in IP are also assigned by the
NIC, as are most values in header control fields.

Iwas onceshownan Ethernetanalyzer which did not doavery
good job of capturing packets based on IP addresses (or any
protocol-specific address). The manufacturer had some trouble
understanding that once a packet passes through a router it loses
its original Ethernet address but retains its protocol address.

In my case, seven Ethernet addresses represent several thou-
sand IP addresses, as three of those seven are routers that
concentrate traffic from many others. And that’s only machines
inside North Carolina. Two more Ethernet addresses (the external

“Once a packet passes through a
router it loses its original Ethernet
address but retains its protocol
address”

routers) represent the rest of the whole Internet. I could not
possibly pick out an exchange between two machines based on
the Ethernet addresses alone.

Obviously, there are shortcomings toIF, but there aren’t many.
Inaddition, most of these are implementation issues and not bad
design in the protocol. The biggest operational problem is with
poorly done systems. I[P has so many features for robustness that
for local-area work it's tempting to bypass many of them. This is
particularly true for PCs, which don’thave enough cycles tospare
anyway. Fortunately, as more and more manufacturers enter the
field, the bad versions are retired as cbsolete or are fixed.

Even though there are 16,000 class B addresses and millions of
class C addresses, networks tend to be sparsely populated. Thus
thereis a problem withexhausting networknumberseven though
almost no networks are at a point where all possible addresses in
it are assigned. This is the tradeoff for guaranteeing
internetworking. Even class C addresses are going fast, as people
tend to ask for several at a time.

IP has a broadcast address, and system designers tend not to
be very careful about what they broadcast. There have now been
established class D and class E addresses which are multicast
addresses. Obviously, in Ethernets there is an inherent multicast
mechanism, but IP should not be thought of only in local-area
terms.

It has been difficult to establish multicast protocols over IP as
a result. For example, newsfeeds could be multicast similarly to
how radio does it. There you have prearranged times when the
news is sent, and interested parties take it. In IP a separate
newsfeed has to be sent to each interested party.

11

There is a problem with routing information updates in the
system of routers. Consider that over 3000 networks are presently
connected to the Internet. If you only enumerate each network’s
number with one morebyte toindicate whetheritisavailable, that
isover 15,000bytes of information. At56 kbps, this takes over two
seconds of transmission, which is rather wasteful.

The problem is being handled in two ways. First, line speeds
are getting higher, so the transmission time is reduced and the
_proportion wasted is smaller. Second, update systems are being
modified so that nothing is sent unless some change actually
happens. This greatly reduces the amount of data tobe sent.

Asomewhat more serious problem is knownas the ARP-cache
problem.Recall that in alocal area networkeverybodyis available
through one port. It then becomes necessary to have a lookup
table referencing IP addresses to Ethernet addresses. This is
because the Ethernet system switches using Ethernet addresses,
even if the application uses IP addresses.

Themechanism thatprovides thiscross reference is called ARF,
the Address Resolution Protocol. The initial exchange of ARPis a
broadcast, asking the question ‘does anybody on this network
have the IP address so-and-so?’ If that machine does exist, it will
send a reply directly to the asking machine.

Some designers thoughtit desirabletoretain knowledge of this
exchange even if the original requirement is finished. They rea-
soned that on a local area network, machines access each other
quite often and there really is no reason to ask every time,
especially since broadcasts should be used sparingly.

Unfortunately, the design drops address only if it has notbeen
used for any reason during a fairly long period of time. If the
destination disappeared for any reason but the source machine
kept trying to reach that destination, the entry would never go
away.

This is particularly painful if the destination is the external
router, and there is a backup router available. Due to the ARP-
cache design, the backup is essentially useless because the source
keeps trying the original router which has failed for some reason.

The solution seems to be to drop an entry after so much time
whether or not it has been used recently. This forces a new
exchange every so often, so even if an address changes, there will
only be a short outage.

All in all, IP is a very capable protocol and is still gaining
popularity. Extensions to the protocol are still being done and

CRC, from page 9

the512bytes that the table requires. Thetable canbeeither hard
wired intoa saved program, or calculated into dynamic memory.
Setting up the tableis no problem as even the slow bit-shift routine
calculates the table in 1.5seconds, and that needs tobe done only
once at the beginning of the program.

The good speed of the byte-shift methods surprised me. This
algorithm is as tortuous as any I've ever seen. A week of doodling
nulls and ones and scratching my head passed before I could get
itsorted out and debugged. Evenso, the high level versions could
hold their own in a medium speed modem program. After
finishing BYTE1-CRC16, | derived BYTE2-CRC16 to save two
shifts per CRC update, and increased the speed by 2.5%.

Thebit-shift CRC routines finished last though they are closest
in operation to their hardware counterparts. The high level
version (BIT2-CRC16) amazed me by its significantlack of speed.
Simplicity is its only virtue.

Conclusion

I hope that this selection of CRC routines will expand the
optionsindesigning your nexthomebrew project. doubt that this
exhausts all the algorithms as I got a whiff of one or two more in
my explorations, but following the trail is difficult in a non-
University setting. Meanwhile, I follow Charles Moore’s
dictum—share the code.®

References

1. Terry Ritter,” The Great CRC Mystery”, Dr. Dobb’s Journal,
Feb. 1986.

2. Jerry LeVan,” A Fast CRC”, Byte, Nov. 1987.

3. Donald Krantz,” Christensen Protocols in C”, Dr. Dobb’s
Journal, June 1985.

4. Ethan Winer & Jay Munro,” Download Utilities The Easy
Way With PC-Access”, PCMagazine, Apr. 10,1990, p. 293-
312.

generally do not require everyone to upgrade, showing that the
original design was well done.

Thelnternetin the United States isoperated under the auspices
ofthe National Science Foundation. The ‘backbone’, that is, the set
of lines connecting major areas in the country to one another, has
been operating at T1 speeds for some years now and is actively
moving to T3speeds. Next time we’ll look at how exactly T1 lines
work.@

The Control-R serics of single board computers make
prototyping and one-of-a-kind projects easy and afford-
able. Both feature 8K EPROM, RS232 port, Port 1 & 3
access plus:

Control-R Model 1 $49.95. 5vdc operation, 3"x4",
assembled.

Control-R Model 2 $79.95. Model 1 features + 8K RAM
and expansion bus. 3.5"x4.5"

Affordable 8031 Development
Single Board Computers, Assemblers, Compilers, Simulators and EPROM Emulators.
Ask about design and manufacturing services for your product!

Cottage Resources Corporation
Suite 151, 10271 South 1300 East
Sandy, Utah 84094 USA
VISA/MC, COD. Call to order: (801) 269-2975

8031 “C” Compiler $200.00

Full featured K&R style C development system includes
compiler, assembler, linker, documentation and complete
library source code. High level language plus in-line as-
sembly code gives you the best of both worlds. 5 memory
models allow code generation for any 8031 design—even
those with no external RAM! MSDOS 360K disk.

12

The Computer Journal / #55

Z-System Corner

Type-3 and Type-4 Programs
Some New Applications of Type-4 Programs

By Jay Sage

Hors d’Oeuvres

Before startingon the mainmaterial for this column, L havetwo
subjects to discuss very briefly. First, for those waiting for the
CPU280tobecomeavailable, yourwait willalmost surely be over
by the time you are reading this. Ralph Beckerjust became the first
American withaworking CPU280, and he knows where togetall
the parts. Between the two of us, we will be offering CPU280 kits.

Second, I have just started using 4DOS, acommand processor
to replace those that come with MS-DOS and DR DOS. | am
extremely impressed. [The name of the principal author of 4DOS,
by the way, is Rex Conn, uncannily similar to that of the principal
author of ZCPR, Rick Conn!] Like PCED, which I have used for
several years and about which I have already written in TGJ,
4DOS offers almost (but still not quite) everything that Z-System
does. I willbe talking about it in the future, and it has already been
added tothe Sage Microsystems East product line (the retail price
is $69, but SME will have an introductory price of $60). The manual
alone is worth the money. Itis writtenina Z-System style and haslots
of good, basic information about MS-DOS-style computers.

I got started with 4DOS because, for reasons that are still not
clear, I have not been able to get PCED to work in a DESQview
window under DR DOS 6. It works outside DESQview with DR
DOS 6and insidea DV window withM$-DOS 3.3 (and, I am told,
- MS-DOSS5). But the combination of DR DOS 6 and DESQview just
won’t go. The problem will probably be solved, butI don’t have
the solution yet. There are still some things that PCED offers that
4DO0S does not, but the reverse is also true.

Some time we should also talk about ZSIM12, a true CP/M
emulator for IBM-PC-compatible computers. ZSIM provides so
completeanemulation—farand away more completethan22NICE
and Z80MU—that NZCOM runs perfectly underit. PCED, 4DOS,
and ZSIM give us three ways to have Z-System- like functionality
on a PC platform.

The Main Topic

In my last column, which recounted the historical develop-
ment of ZCPR, I mentioned that in version 3.31 had introduced a
revolutionary concept for CP/M—programs thatwouldbeloaded
and run at a fixed address other than the standard 100H. These
programs were called, for reasons that will be explained a little
later, type-3 programs.

In ZCPR version 3.4, with Joe Wright leading the way, he and
I introduced a further extension of this concept, the type-4
program. Joe envisioned this kind of program as loading itself
automatically as high in memory as it could possibly run given
the current system configuration at load time. However, by
moving the special loader code out of the command processor
(CCP) and into the program header, I not only saved code space
in the CCPbut also made the type-4 loader concept more general.

Until recently, however, no one had developed any type-4
loaders other than the one, released with ZCPR34, that performed
the task Joe wanted to achieve. This column will present several
new examples that | hope will promote some creative thought on
the part of readers.

The Type-3 Program

Programs writtenspecifically for ZCPR version 3.0began with
special header code having the following form:

org 100h ; Programs always start at 100H
ip start ; Jump past the header

db 'Z3ENV’ ; ID to identify a Z program
db progtype i Type of 2 program

dw envaddr ; Address of ENV module
start: ; remainder of program code

The program begins with a jump instruction to make execu-
tion skip over the header material. Right

afterthat comesan ASClIstring, "Z3ENV’,

Jay Sage has been an avid ZCPR proponent since the very first version appeared. He is
best known as theauthor of the latest versions 3.3 and 3.4 of the ZCPR command processor,
his ARLINZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announcedits plan toset up anetwork of remoteaccess computer systems
tosupport ZCPR3, Jay volunteered immediately. He has been running Z-Node #3 for more
than six years and can be reached there electronically at 617-965-7259 (MABOS on PC
Pursuit, pw=DDT). Jay is the Z-System sysop on the GEnie CP/M Roundtable and can
be contacted as JAY.SAGE via GEnie mail, or chatted with liveat the Wednesday real-time
conferences (10p.m. Eastern time). He can alsobe reached byvoiceat 617-965-3552. A good
time to find him at home s between 11 p.m. and midnight but please do not call Fridays
or Saturdays. Jay's mailing address is 1435 Centre Street, Newton Centre MA 02159.

In real life, Jay is a physicist at MIT, where he tries to invent devices and circuits that
useanalog computation tosolve problems in signal, imageand information processing. His
recent interests includeartificial neural networks and superconducting electronics. He can
be reached at work via Internet as SAGE@LL.MIT.EDU.

The Computer Journal / #55

which can be used by other programs
(including the command processor) to
determine that this is a Z-specific pro-
gram.

Next comes a byte that contains a pro-
gram-type value. A value of 1 (binary, not
ASCI]) indicates that the program refer-
ences an external environment module
(ENV), whichisavirtually universal com-
ponent of a ZCPR3 system. This module
contains information about how the
ZCPR3 system is configured, such as
module addresses and sizes.

13

Listing 1

com: ; Process transient command
1d hl,tpa ; Set default execution/load address
1d a,3 ; Dynamically load type-3 and above ENVs
call mload ; Load memory with file specified
; in and line

; Next two lines added by Bruce Morgen
jx ne,comnrml ; If not special Type 4, carry is clear

1d (execadr),hl ; Revise lcad address, special Type 4 b/m
comnrml ¢
Y vees ; Some code omitted here

; Copy cammand tail into TBUFF

callprogl:
tailsv equ
1d h1,0

Pointer for in-the—code modification
Address of first character of
command tail

Point to TBUFF

Save pointer

C=0 (byte counter) and B=7F (max bytee)
Loop to copy tail

Some code omitted here

$+1

1d de,tbuff

push de

1d bc,7£00h
tail:s

e Mo We %o We N5 N e

; Run loaded transient program
call defltdma ; Set DMA to 0080h standard value

Perform automatic installation of 23 programs (unless
type-2 environment)

1d hl, (execadr) ; Get current execution address

call z3chk ; See if file is a 23 program

1d de,z3env ; Get actual ENV address

jr nz,execute ; Branch if not 23

cp 2 ; If type-2 (internal) environment
ir z,execute ; ..do not perform installation

+ Inatall types O, 1, 3 and 4 (I don’t think type-0 exists)

inc hl ; Advance to place to put Z3ENV acirees
1d (hl),e ; Put in low byte of envirorment address
inc hl

1d (hl),d ; Put in high byte of envirament adiress
; Test for RST 0 as first byte and change to JP if so

1d hl, (execadr) ; Point to first byte of program code

1d a,(hl)
cp Oc7h ; Test for RST 0
jr nz,execute

1d {hl),0c3h ; Replace with JP instruction

; Execution of the program occurs here by calling it as
; a subroutine

execute:
ex de,hl ; Pass Z3ENV address to program in HL
execadr equ $+1 ; Pointer for in-line code modification
call tpa ; Call transient (or resident)

; Return from execution

Listing 2

mload:
id (envtype),a ; Set up in-the-code modification below
1d (execadr),hl ; Set up execution/load address
call defltdma ; Set DMA address to 80H far file searches

Code for searching path omitted
Code for extended cammand
processing omitted

~e w o~

call Open file for input

Some code omitted here

Read first record into default
DMA address

H
;
H
jr nz,mload5 ; Branch if zero-length file
,a
H

call

1d (cmdfcb+32) ; Set file current record back to zero
14 hl,tbuff Pointer to start of code

call =z3chk
1d hl, (execadr) ; Get initial loading address
jr nz,mload4 ; If not Z3 file, branch

The following test is modified by earlier code. For normal
COM file loading, a 3 is inserted for the minimum
environment type for dynamic load address determination.
For the GET command, where the user-specified address
should be used, a value of OFFH is put in here so the
carry flag will always be set.

~e Ne me wa we we

envtype $+1 Pointer for in-the-code modification
See if no higher than a type-2
environment

equ H
i
i
jr c,mload4 3 If lower than type 3 (or 255), branch
)
H

cp 3
1d hl, (tbuff+11 ; Load address in case type-3
jr 2z,mload3b Type 3 command, do that

; A8 not 1, 2 or 3, assume Type 4 command
. ; Some code omitted

; Type 4 header does ite own calculations

1d hl,cmdfcb+32 ; Make HL paint to recard count byte

1d (hl),2 ; Set record count to 2 (had
; been reset to 0)
call readcmd ; Record 2 into tbuff
ijr nz,mload5 ; File too short
1d {hl),a ; A=0 from READOD into record coumnt
1d hl, (tbuff+ll) ; Size info from code section
call reademd ; Record 0 into tbuff again
1d a,fullget ; We need this flag
1d b,h
1d c,l Get size info into BC

1d de,entry
1d hl,z3env

Beginning of CCP
Pass EnvDisc address ?

e me e wa we we

call tbuff+9 Call Type 4 loader
call readcmd Read record 1 to thuff (point to
record 2)
mload3b:

1d (execadr),hl ; Set new execution/load adiress

; -- returned by type 4 loaderl

; Load the file, making sure neither CPR nor protected
; memory is overwritten

mload4:
Loading code omitted
Close loaded file

coce

i
call closcmd H

; In case a program would like to find out in what

; directory the command processor found the program,

; temporary DU is stored in bytes 13 (user) and 14 (drive)
; in the command FCB.

tempusr equ $+1 ; Pointers for in-the-code modification
tempdr equ $+2
1d hi,0

1d (cmdfcb+13),hl

logcurrent: ; Return to original logged directory
1d de, (curusr)
jp logde

14

The Computer Journal / #55

APROGTYPE valueof 2 (thoughl don’tbelieve | everactually
saw itused) would indicate that the ENV datablock wasincluded
(as an extended header) within the program code itself. This was
a vestige from ZCPR2, with which Z programs had to have the
environment information configured into the program.

WithZCPR331introduced programs witha PROGTYPE value
of 3and aslightly extended header. Its form became the following:

org entry ; Programs start at ANY ADDRESS
-jp start ; Jump past the header

db 'Z3ENV’ ; ID to identify a 2 program
db 3 ; Type of 2 program
dw envaddr + Address of ENV module

dw entry ; Load address for program
start: ; remainder of program code

Thereis an extra word (i.e., twobytes) following the program-
type byte. This word contains the address to which the program
was assembled/linked and to which the ZCPR33 command
processor was to load and execute the program.

Asaquickaside, there wasone thing that1 didn’t think of when
I created this kind of program. If one tried to run it under either
CP/M or ZCPR version 3.0, the command processor would not
know about type-3 programs. It would load the type-3 program
to the standard 100H address and then start to run it. The “]P
START” instruction would still go to the place where it would
have gone had the program been loaded to the specified ENTRY
address. Since the code wasnotinfactloaded there, very strange—
and almost always unpleasant—behavior would result.

Others later developed a fix for this. The “JP START” was
replaced by “JR START”, a relative jump. This would work no
matter where the program was loaded. Special lead-in code at the
START address would determine the actual load address and
compare it to the proper type-3 load address stored in the header.

If the addresses did not match, an error message would be
displayed, and execution would terminate before any damage
was done. This entire piece of protection code must, of course, use
only location-independent instructions.

The Type-4 Program

Theloadingofatype-3 program presents nospecial challenges
to the command processor. It simply copies the contents of the
program’s COM file intomemory starting at the specified address
rather than the standard address of 100H. A type-4 program, on
the other hand, is going tobeloaded and runat differentaddresses

at different times; the COM file cannot, therefore, contain the
actual code as it is to be run.

The problem of storing code in a form that permits it to run at
arbitrary addresses had been solved long ago using what is called
a PRL file, where PRL stands for “Page ReLocatable”. This file
comprises two major parts. The first part is the actual code
assembled forastarting address of 100H. Thisis followed by what
is called a bitmap. The bitmap tells which bytes in the 100H-
address code have to be adjusted in order for the code to run at
anotheraddress. Eachbyte in the bitmap has 8 bits and can cover
8 bytes of the program code. Thus, the bitmap is one- eighth the
length of the code.

APRLfile has one other component, aone-page (= two records
=256bytes) headerin front of the two partsI described above. This
header is almost completely empty (i.e,, filled with zeros). The
only data it contains is in bytes 1 and 2 (where the bytes are
numbered starting with 0). There it stores the length of the code
portion of the file. This value allows whatever routine carries out
the relocation to determine where the code ends and the bitmap
begins.

Another quick aside. The firstbyte, byte 0, is filled witha “RST
0” instruction, a one-byte opcode that performs a call to address
0000H. This initiates a warmboot. Thus, if an attempt is made to
execute a type-4 program under any version of the command
processor other than ZCPR34 or later, the program will simply
reboot. This is not as nice as displaying an error message, but it is
a lot better than trying to execute a raw type-4 file! To allow this
same protection tobe used with type-3 programs, some extracode
was added to ZCPR34 to replace a leading “RST 0” instruction
with a “JP” opcode at load time.

Now back to the matter of how ZCPR34 handles type-4
programs. ZCPR34 needs to accomplish two tasks in connection
with loading a type-4 program. First, it has to determine the
address to which the code should be loaded. Second, it has to
perform the address relocation to permit it to run at that address.
To do this, it makes use of code in the CCP together with code
placed intothe available space in the PRLheader. How it does this
isreally quite tricky, and I doubt that anyone other than Joe Wright
could have come up with the code to do it!

Since we don’t want the type-4 program to interfere with any
user code currently residing in memory, we have a problem
figuring out where to execute the loader code. Had it been placed
entirely in the command processor, there would have been no
problem, but alot of valuable code space would have been taken

up.

Listing 3

i Program: TYP4LDR.Z80

; Ruthors: Joe Wright, Bridger Mitchell, Jay Sage
; Contributors: Bruce Morgen

'
; Record 0 Routine — Load Address Calculator
100h

org ; ORG HEX file at 100h

.phase tbuff 1 Program actually runs at 80h

rec0: rst 0 ; Anything but ZCPR34 will warmboot

length: ds 2 i Length of the code module (SPR ar PRL)
db ‘Z3ENV’ ; 2 program ID
db 4 ; A Type 4 program

start: ; CCP calls the code at this point

stack and register manipulations

calculation of room needed for program, including bitmap
adjustment for fullget status

choose larger of load size and memory size as space required

~s we wa owe

h

- ~ we we we we

- we we e

calculate load address as if RSX defines top of TPA
calculate load address as if CCP defines top of TPA
keep the lower of those two values

optionally force page aligrment

set up same data an stack for second part of loader
return to OCP with load address in HL

Record 1 Routine - Code Relocator

.phase tbuff ; Thie code also runs at 80H

stack and register manipulations

make sure header of loaded code has type 4 set

perform relocation of the code

return to CCP
.dephase ; Good Housekeeping

end

End of TYP4LDR.Z80 Relocator

The Computer Journal / #55

15

Listing 4
; Now calculate poesible loed ackiress assming OCP defines top of TPA

; CCP address ;(+4)
; Calculate address and keep lowest

pop hl
call adjaddr

; HERE IS THE NEW CODE!

; Finally, calculate the poesible load address using the value

; specified in the program header. If this value is lower than

; the highest possible address, then it will be used. Otherwise,
; the highest possible value will be used.

1d de, (ldaddr) ; Get specified load address
xor a ; Make sure carry flag is clear

call adjadrl ; Keep lower address

; Get ready to return to CCP

. loadaddr equ $+1

1d de,-1 ; Get final value of load address

if align

1d e,a ; Force page alignment (A=0)

endif

pop hl ; Get file size ;(+2)

push de ; Pass load address to record-l1 routine
i(+4)

push de ; Hold a copy on the stack for now
i(+6)

load: jp 0

.
r
.
7
i
.
'

adjaddr:
xor a ; Clear carry flag
sbc hl,de ; Compute new possible load address
ex de, hl ; ..and put it in DE
adjadrl: ; THIS IS A NEW LABEL!
1d hl, (loadaddr) ; Get previcusly computed loed adiress
sbc hl,de ; Compare HL and DE
ret ¢ ; HL is lower, nothing to do
1id {loadaddr) ,de 7 New lower address
ret

1d hl,tbuff ; Set for for CCP to call second record
ex (sp),hl ; Load addrees to HL, thuff to top of stack
if test
rat 38h ; DDT breakpoint
endif

; Return to CCP (hot-patched above)
; Cammand processor loads record 1 to
; «.thuff and records 2+ to load

; ..address, then ’‘returns’ to tbuff
; +.to finish loading

This subroutine takes an address for the top of TPA in HL and
the amount of memory required in DE and computes the proper
load address. It then cawpares it to the value stored at
LOADADIR and replaces the value there if the new value is lower.

There isoneareainmemory thatis available asascratchbuffer:
the second half of the base page from 0080H to 00FFH. This area
is used to store the command tail when a program is run, and it
is the default buffer used by many programs for transferring data
toand from disk. We will now describe in very general terms how
the ZCPR34 command processor uses this space.

Itbeginsby loading the first record of the header (record 0) into
the buffer. After placing some important information into regis-
ters in the CPU (the microprocessor Central Processing Unit), the
CCP calls the code there (but not at the very beginning, as we will
see later). This code computes the address to which the program
should be loaded and puts it into the HL register pair. It then
pushes the address of the default buffer onto the stack and jumps
back to the command processor.

The command processor now loads the second record of the
PRL header file (record 1) into the default buffer and then
continues with its standard loading code, just as if it were dealing
with a type-1 program (in which case HL would have been set to
100H) or atype-3 program (in which case HL would have beenset
to the load address stored in the type-3 header). As a result, all of
the file from record 2 to the end, including both the code and the
bitmap, isloaded into memory at the address specified by the first
PRL header routine.

Once the CCPloader subroutine (MLO AD) has completed its
work, it executes a RET instruction. This would normally return
to the CCP code after the call to MLOAD. At that point the CCP
transfers execution to the beginning of the program that was just
loaded. Inthe case of a type-4 program, however, the stackhashad
the address of the default buffer, 80H, pushed onto it, and so
execution resumes instead with the second routine from the PRL
header. This code carries out the relocation of the program code
so that it can be executed at the address to which it has been
loaded. When that operation is finished, a RET instruction finally
returns control to the CCPafter the “CALL MLOAD" instruction.
The type-4 program is now executed.

For those who may be interested, I have included some
fragments from the ZCPR34 source code in Listings 1 and 2.

16

Listing 1 contains the code that ZCPR34 calls to load transient
programs. It starts with a call to MLOAD after setting the HL
register pair to the default load address of 100H.

MLOAD is an incredibly hard-working subroutine, excerpts
of which are shown in Listing 2. If you look at the code, you will
see how it loads the first record into the default buffer and then
systematically determines what type program it is. It first identi-
fies standard CP/M programs and branches to the file-loading
code with HL set to 100H. Next it identifies Z programs of types
less than 3 and again branches to the code with HL set to 100H.

Then, if the program is type 3, it fetches the load address from
the header at an offset of 11 bytes, puts that value into HL, and
proceeds with the loading code. If things have not been taken care
of by now, the code assumes that it has a type-4 program. If you
look at the code carefully, you will see that there is an additional
complexity that] have not described (and will not). Sufficeit tosay
that it requires a good bit of juggling of the records loaded into the
default buffer.

You can see where the ZCPR34 code makes a call to TBUFF+9.
This starts the execution of the code in the first record of the type-
4 header. On return from that code, the second record is read in,
and the load address in HL is stored as the execution address. The
rest of the program file is loaded just as other programs are (but
startingwith record 2 instead of record 0), and then the codejumps
to the LOGDE routine. When that routine is finished, its RET
instruction is what starts execution of the second record of the
type-4 loader.

The Standard Type-4 Header

The latest version of the standard type-4 header used in all
type-4 programs distributed to date is available in the file
T4LDR11.Z80. Listing 3 contains a pseudo-code version of the
source code.

The first record begins with the standard ID header for a Z
program. That is followed by code to calculate the proper load
address taking into account a considerable number of different

The Computer Journal / #55

possibilities (for example, various ways to determine the space
needed by the program and the top of available memory). All this
functionality has tobe accomplished inonly 119bytes. Joe Wright
and others who helped him (including Bruce Morgen) have had
to be very careful and clever in the coding.

AllTwill say additionally about thesecond record is that it uses
some clever relocation routines developed by Bridger Mitchell. 1
have not looked to be sure, but [believe these routines were
described in one of Bridger’s columns here in TC] a while back.

A Type-3-Like Type-4 Loader

Formy firstexample of anew type-4loader, lam going toshow
you one that makes a type-4 program act like a type-3 program,
but with the fixed load address determined not at assembly time
but simply by patching in the address. In this way, it would be
possible to distribute a program that acts like a type-3 program
but where the user could choose his/her own load address
without having to know anything about assembling and linking
code.

Why would one ever want to use a type-3 program instead of
the standard type-4 that automatically loads itself as high as
possible? Well, I can think of one situation for sure. Suppose one
wants to use the JUMP command to rerun it? It is true that many
type-4 programs display asignon message that reports the actual
load address, and this address could then be used with the JUMP

command. However, this requires that one pay careful attention
to the signon message, and it rules out using a JUMP command
in an alias, where the address has to be fixed and known in
advance.

I will be distributing this loader in the file TAT3LDR1.Z80. Its
header is modified to the following form:

rst 0 ; Warmboot if
executed

dw length ;s Code length

db 'Z3ENV’ ; ID to identify a
%2 program

db 4 i Type-4
program

dw envaddr + Address of ENV
module

: Entry point of loader code

jr start ; Jump past extra
header

db 'ADDR=" s String to
identify patch point

aw loadaddr ; Patch fixed load
address here

start: ; Resume with

T4LDR11.280 code

There is a place for the user to patch in a fixed load address to
be used. This location is made easy to find by the ASClI string in
front of it.

Listing 5

; Program: T4PLDR.Z80

s+ Authors: Jay Sage

; Date: December 17, 1988

This type—4 loader prompts the user for the desired load address. A
single digit between ‘0’ ard ‘9’ is entered.If ‘0’, the program is
loaded to 100H For any other digit, the load address is that digit
followed by “000h”. Thus ‘4’ causee the program to load at 4000h.
There is no checking to make sure that the specified addrees is
safe; thus, the system can be crashed if too high a load adiress
is specified.

Ne me we me we we we

qvers equ 10

tbuff equ 80h ; Always executes from default buffer
Macros for printing space free have been amitted here, and their
invocations later in the code have been stripped out. The
entire second record has also been amitted, since it is the same
as the standard one in T4LDR11.280.

~e we ne we

Record 0 Routine -- Load Address Calculator

Oon entry, we have:

i
i
; HL = 2Z3ENV, environment descriptor address
H DE = ENTRY, address of beginning of CCP
; BC = PROGSIZE, program size from program header
; in record 2
H A = FULLGET flag
org 100h ; ORG HEX file at 100h
.phase tbuff + Program actually runs at 80h

recl: rst 0 Only a ZCPR34-compatible CCP

..can execute this file

~ e

length: ds 2 ; Length of the code
db ‘Z3ENV’
db 4 ; A Type 4 program

start: ex (sp),hl s Get return address from stack

; ..and put Z3ENV on the stack

1d (load+l),hl ; Set in-line jump to the return adiress
ld hl, (length) ; Length of this PRL/SPR code
push hl ; Save on stack for sector 1 rautine ;(+2)

; Now we need to get the load address.

1d (stAck) ,8p ; Save stack pointer
1d s8p,stack ; Set up local stack pointer
i

1d c,9 BDOS string output routine
1d de,message

call 5

1d <,l ; BDOS conin function

call §

1d sp, (stack) ; Restore original stack pointer

id hl,100h ; Default load address

cp 11 ; See if less than ‘1’
ir c,resume ; If so, use default address
cp ‘941 : See if between ‘1’ and ‘9’
jr nc,resume ; If not, use default addrees
sub ‘0 ; Convert to binary
add a,a ; Multiply by 16 (10H)
add a,a
add a,a
add a,a
1d h,a ; Use as load address
resume:
pueh hl Pass load address to record-l routine
(H)
push hl Fill another stack entry ;(+6)

ld hl,tbuff
ex (sp) ,hl

Set for far OCP to call second record
Make 2ZCPR34 go to thuff, and return
..with load address in HL

~e %e me wa we we

load: jp 0 Return to CCP (hot-patched above)
Camrand processor loads recard 1 to thuff
..and records 2+ to load address, then

..'returns’ to tbuff

~e wr we ne

message:
db ‘Digit (0-9) for load address: §$'

da 2*13 ; Space for local stack
stack: ds 2 ; Place to keep original stack pointer

.dephage

The Computer Journal / #55

17

The rest of the code is the same as that in T4LDR11.Z80 except
that at the very end, after the highest possible load address has
been calculated, it is compared to the fixed load addressspecified.
If the fixed address is lower than the highest allowed, then its
valueis putinto HL. If the fixed address specified is too high, then
the highest possible value is used instead. Very little additional
codeis required because the comparison code is already available
in an existing subroutine. The new code is shown in Listing 4.

Installing a New Type-4 Loader

Before going on to the second example of a new type-4 loader,
I would like to describe how these new loaders can be installed
into anexisting type-4 program so that you can experiment. One
of the nice things about the way type-4 programs are imple-
mented in ZCPR34 is that you do not need source code for the
program. A new loader canbe installed atany time. Youneed only
the loader code in the form of a HEX file, which you can either
generate yourself from the loader source code or get from some-
one else who has done the assembly.

Tomake the HEX file, you assemble the loader source with the
appropriate assembler switch on the command line. Forexample,
with ZMAC or the SLR Z80A SM assemblers the command lines
would be

2ZMAC T4T3LDR1/H
Z80ASM T4T3LDR1/H

Once you have the HEX file (e.g., T4T3LDR1.HEX), you install
itontoa type-4 program (let’s call it PROG.COM) using MLOAD
or MYLOAD, public-domain loader utilities available through
the ZSUS service or from Z-Nodes and, in the case of MLOAD,
many RCPM systems. Here is the command line to make a new
version of PROG.COM with the new loader:

MIOAD PROGNEW.COM=PROG.COM,T4T3ILDR1.HEX

A More Elegant Type-3-Like L.oader

Well, now we have atype-4 program that canbe patched easily
to load the program to any address we like. How about making
life even nicer by having the loader ask us — at the time of
loading—where we would like the code loaded? We can then
easily load the program to different addresses each time we run
it without the nuisance of having to patch it. [Here is an exercise
for the reader: why can’t we use the GET/POKE/GO or GET/
POKE/JUMP techniques to hot patch the address into the type-4
program (or do any hot patching at all)? Hint: will the GO or
JUMP commands work right?)

This second new loader contains none of the code for calculat-
ing the load address that TALDR11 has. Instead, it puts up a
prompt and waits for the user to press a digit key between ‘1’ and
‘9".Ifanillegal key is pressed, the code is loaded to address 100H.
For legal digits, the value is multiplied by 1000H, and that value

Listing 6

; Program: T4WBLDR.Z80

; Authors: Jay Sage

; Date: December 17, 1988

This type-4 loader is similar to T4T3LDR.Z80 but with two
important differences. First, it loads the code to the address
specified in the header without any checking, and, second, it
does not execute the code. It uses Bruce Morgen’s addition to
ZCPR34E that allows the execution address to be changed to the
value returned in HL by the second recard of loader code when
the carry flag is set. This loader sets that address to
0000H to force a warm boot.

Ne Ne we N me we we e

vers equ 10
tbuff equ 80h
bdos equ 05h

; Always executes from the default uffer
; BDOS entry point

; Macro definitions that we included here and their invocations
; later in the code have been cmitted. Same camments that
; duplicate material in other listing have also heen stripped out.

;

; Record 0 Routine =-- Load Address Calculator
org 100h ; ORG HEX file at 100h
.phase tbuff ; Program actually runs at 80h

recO: rst O Only a Z2CPR34-compatible CCP

; ..can execute this file

~

length: ds 2 ; Length of the code
db 'Z3ENV’
db 4 ; A Type 4 program
jx start ; Jump past load address
db ‘ADDR="' ; ASCII marker
ldaddr: dw 1000H ; This value should be patched to the
’ ; ..desired load address
message: ; Patch the message, too
db’ ‘Code loaded to address 1000H$'

start: ex (sp),hl ; Get return address from stack

; ..and put Z3ENV on the stack

1d (load+l),hl ; Set in-lire jump to the return address
1d hl,(length) ; Length of this PRL/SPR code
push hl ; Save on stack for sector 1 routine ;(42)

; Report load address to user.

1d (stack),sp ; Save stack pointer
d sp,stack ; Set up local stack pointer

1d c,9 ; BDOS string output routine
1d de,message
call bdos

1d sp, (stack) ; Restore original stack pointer

1d hl, (1daddr)
push hl

push hl

1d hl,thuff

ex (sp),hl

Get load address from header

Pass load address to recard-l routine ;(+4)
Fill another stack entry ;(+6)

Set for for OCP to call second record
Make ZCPR34 go to thuff, and return with
..load address in HL

~ we Wi we e e

load: jp 0 Return to CCP (hot-patched above)
Command processor loads record 1 to
..tbuff and records 2+ to load

..address, then ‘returns’ to tbuff

~e %o we we

ds 2*13 ; Space for local stack

stack: ds 2 ; Place to keep original stack pointer
.dephase

;

; Record 1 Routine -- Code Relocator

Standard code from T4LDR11.2Z80 omitted. We pick up with
the new code right after the relocation is complete and
interrupts are reenabled.

. we wa

1d hl,0 ; Force warm boot

scf i Set carry flag so HL will be used
ret ; Return to MLOAD3’s caller in ZCPR34
.dephase ; Good Housekeeping

end

; End of T4WBLDR.Z80 Relocator

18

The Computer Journal / #55

is used as the load address. No checking is performed to insure
that the code can safely be loaded to the requested address. The
user must accept that responsibility. It would be nice if the code
could check the address, but the basic code barely fits as it is in the
space allowed.

The code for the second record (the relocation routine) is the
same as in TALDR11. The new code for the first record is shown
in Listing 5. You will notice that an internal stack is provided.
When tested this code, I found that the CCP stack could not hold

" everything that XBIOS pushed onto the stack during the BDOS

function calls. As I recall, Howard Goldstein did not have this
problem when he tested the code ona different computer. Includ-
ing the local stack in the code seemed to be prudent.

ZCPR34 Release E

Howard Goldstein recently finished implementing a number
of minor bug fixes in the ZCPR34D code, which had been the
standard production version for some time. At the same time, he
alsoadded a new feature invented by Bruce Morgen. The result is
version 34E.

I will not go into Bruce's reasons for introducing this innova-
tion, partly because this columnis already long enough and partly
becausel don’t really remember right now exactly what all of his
reasons were. However, my final example will make use of this
new feature. Please bear in mind, however, that unless you have
ZCPR version 34E (which few people have), this final type-4
loader will not work. If anyone who owns a copy of ZCPR34
wants to experiment with this new feature, please contact me
about getting the updated version.

Inthe previous versionsof ZCPR34, as we described above, the
first record in the type-4 loader calculates the load address and
passes it back to the command processor. The command proces-
sor then loads the code to that address, adjusts any addresses in
the code (that’s the relocation), and then—here is the crucial
point—executes the code at that load address. Bruce's change
allows the execution address to be determined independently of

- the load address.

Here is the essence of Bruce's observation. The second loader
routine normally just performs the code relocation and then
returns to the command processor, which proceeds to execute the

code. However, some interesting possibilities can be introduced
by allowing this second routine to decide that the execution
address should be changed from the load address that was
calculated by the first loader routine. Bruce observed that the
carry flag happened to have been left clear (reset) by all existing
type-4loadersand by the internal CCP code used to load all other
types of programs. Bruce added a tiny bit of code to ZCPR34 (you
can see it very near the beginning of Listing 1) to have it check the
carry flag. If the flag is set, then the contents of the HL register pair
are copied into the execution address stored in the CCP.

Our final example of a new loader, TAWBLDRY, is a further
variation suggested by TGJ editor/publisher Chris McEwen.
When I showed him T4T3LDR, he noted that it could be used to
install code as a kind of TSR (this is an MS-DOS term for
Terminate-and-Stay-Resident, code that loads itself and remains
in place for further use) in the NZCOM user buffer area.
T4WBLDR1 can be used that way.

The one essential change is a small addition to the code in the
second header record toload the HL register pair with the address
0000H and set the carry flag before returning. This causes ZCPR34
to perform a warmboot (whose entry point is at address zero)
instead of executing the newly loaded and relocated type-4
program code. The code is now available for execution by the
JUMP command at a later time.

Since the NZCOM user buffer area is above the CCP entry
address, the usual address verification code in the first record of
the headerin TAT3LDR would refuse to use the specified address.
To get around that, we simply remove all of that code and accept
the user-specified address without questioning. Listing 6 shows
the code for TAWBLDR1.Z80.

Conclusion

The implementation of the type-4 program follows the tradi-
tion of modularity and flexibility that is the hallmark of the
Z-System. Because of those two characteristics, there are always
more ways to use any Z-System facility than its authors envi-
sioned when they created it, and this allows for and encourages
a steady stream of interesting new developments. | hope my
examples here will inspire more innovation in the area of type-4
programs. @

Computer Corner, from page 48

of contents, and then select one section and home in onit. if that
section meets their muster it is a buy, if not, sale lost.

FORTH DAY

That overly thick manual was up for sale at the November
Forth DAY in the San Francisco bay meeting. [saw lots of people
look at it and put it back down quickly. Time is far too short for
most people these days. Buying any new project that requires tons
of reading to master it, just doesn’t cut it. Don’t get me wrong, if
I need to use the product, | will wade throughall the pages tofind
out what | need. However don’t ask me to be happy about it.

Well I would say being happy about Forth was not on the
agenda at Forth Day. It seems people are still concerned about
where Forth is going, if it is going anywhere at all. There were
some good speakers and a few good products for sale. About the
only real news item was SUN’s and Bradley’s pushing for a
standard FORTH ROM BASED DEBUGGER. As some of you
know the SUN’s SPARC based computers boot from a Forth

The Computer Journal / #55

based ROM. Also the expansion cards all have Forth based
routines that load their drivers.

Well SUN issohappy with this operation that they are pushing
to get a standard word set and operational structure established.
Itsounded like it will stay rather closely to what the SUNS’ ROM
does now, but soon all manufacturers may start changing their
ROM BIOS’s to Forth. From a maintenance stand point [can not
support it strong enough. I hate how each vendors debugger
works differently as well as always having just too few options to
solve my problem.

On Forth itself, things look rather flat. Some more chips are
scheduled tocome out from ChuckMoore. These willbe 200 MHz
machines running a form of Forth. Chuck designs the chips with
his own Forth based CAD system. He does this because none of
the chip making CAD systems on the market can do what his
does. It also means he can add features as he sees a need for them.
Will these new machines make any big inroads, I doubt it as well
as Chuck doubts it. Seems nobody believes he can make a 200

See Computer Corner, page 21

19

HARDWARE HEAVEN

Trade Mags

By Paul Chidley

Back Again?

Well, curses on you all! Well not really. I wrote the first article
just to let off some steam. Unfortunately someone must of liked
it because | was asked to write some more. In some ways I was
kind of hoping someone would like it, but I had hoped that
enough people would say thumbs down so I could spend my
afternoons smoking chips instead of typing at my desk. So after
a few hours of sniffing solder fumes here 1 am with Hardware
Heaven number two.

Now, firstlet me say that this was not my pick for a title for this
column. My first choicel rejected myself toavoid aliablesuit from
another column. My second choice, TGJ turned down probably
because they wanted to avoid a liable suit. So here we are with
Hardware Heaven. Or is it hell? Some days | wonder. Anyway I'm
on my way to Trenton for the big computer festival, or “How to
spend $600 on air fare to drink beer; eat pizza and talk weird stuff
with other Hackers.” Hope to meet some of you there.

Trade Mags

Asfor the column I thought1 should dive right in and scare the
Editorby talking about other magazines. Not the one sold by the
pound, or the PC mags that live in their own little biospheres but
the “trade” magazines. Trade magazines are little corners of guru
worship all theirown. Now what dol meanby a trade magazine?
Well those who know what I'm taking about know that TGJhas
nothing to fear from these guys. A trade mag s basically a glossy
professional magazine full of expensive looking ads aimed at
ivory tower engineers and R&D managers. The ads are only for
the latest greatest toy, no doubt better than last week’s toy. The
articles are much the same since they are usually written by tech
writers from the same companies that placed the ads. These mags
arealso very focused, aiming for a specific audience and therefore
they are also very narrow minded. For example, you might find
one called Component Mounting dedicated to “pick & place”
machines capable of auto mounting components on your PCB,
Now don’t laugh, that's how focused they canbe. So why would
anyonebeinterested in them? Well they are a tool. (You know, like
a hammer, saw, IBM-PC, et cetera). Like any tool, what they can
do for you depends on how well you use them. I skim read every
one that passes my desk. I use those cute little markers to flagany
article or ad that caught my interest. I use them as a learning tool
to keep me up to date with trends in the

chine? [Soda machines use 68HC11's!-Ed.] Answer:1 don’t. The ones
I read are free. The only catchis that you are “qualified” tobe a free
subscriber, otherwise they want a few hundred dollars a year. So
whatisa “qualified” subscriber? Someone that can fill in the form
with the correct answers to the questions. These magazines
survive on the high fees they charge to advertisers. They can do
this because they show the advertisers that their readers are
exactly the kind of people the advertiser is trying to reach. If you
know what that is and fill out the form accordingly then they will
add you to their list. As before you don't lie, but you do answer
with what they want to hear.

Now where do you find such mags? Well the public library is
astartbut not likely a successful one. Try the library of your local
electronics college or university. Try a friend who works in the
electronics trade. Our library at work has over 50 titles available.
Once you find a few, photocopy or tear out (with permission) the
subscription card, fill it out, and send it in. The worst that will
happen is that you never get a reply, but with luck you can add
several pounds a month to the local letter carrier’s bag.

Dallas Semiconductor DS1233

Wellhere’s my chip of the month. (Now before you write to the
editor, Yes I know that TCJis every second month, 1 actually pick
a chip each month but only write about every second one). It
should be pointed out that I do not work for Dallas Semiconduc-
tor, they just happen to make some of my favorite chips. The
DS$1233 is known as the EconoReset. Its features are listed on the
data sheet as;

Automatically restarts the microprocessor after power failure

Monitors push-button for external override

Internal circuitry debounces push-button switch

Maintains reset for 350mS$ after Ve returns to an in-tolerance

condition or push-button released

* Accurate 10% or15% microprocessor powersupply monitoring

* Reduces need for discrete components

* Precision temperature-compensated voltage reference and
voltage sensor

* Low-cost TO-92 package

* Internal 5K ohm pull-up resistor

electronicsindustry. Sometimes| find new
neat little chips that are actually useful
(Dallas’ DS1233). Then I file them away.
Now why would I pay good money to
see the latest available 32-bit embedded
controllers to ever add Al to a soda ma-

Paul Chidley is a senior technologist at NovAtel, an Alberta based cellular phone
company. Heis a neophyte ZCPR user, but has been active in homebrewed hardware and
software design for many years, primarily in the Ohio Scientific and 6502/816 area. Paul
can be reached on GEnie (email address: PCHIDLEY), by regular mail at 162 Hunterhiorn
Drive NE, Calgary, Alberta, Canada T2K 6HS5, or by telephone at (403) 274-8891 during

reasonable MST hours.

The Computer Journal / #55

In other words this is the equivalent of your standard reset
circuit. The Yasbechassucha circuit. AnRC toprovidethe power-
ondelay and switch debounce. The switchis in parallel tothe cap,
this signal is fed to a HC14 schmit trigger inverter. This provides
anice clean logicsignal rather than the RC curvebutitis thewrong
polarity soasecond inverter is needed. This circuit performs fine
unless the power is cycled faster than the cap can discharge soa
diode is needed to discharge the cap at power off. Purists would
alsosay theaseries resistoris needed tolimit the discharge current

- through the diode. Our simple little reset circuit now has seven
parts and still only does half of what the DS1233 does. So what
does this neat little part look like? A 84pin PLCC? A 16pin dip?
Sorry, it only has three leads and comes packaged in your
standard TO-92 (like a transistor) or SOT-223 surface mount

packages.
For the TO-92 package;

Pin1 — GROUND
Pin2 — _RESET
Pin3 — Ve

A normally open optional reset button and a capacitor are
connected between _RESET and GROUND, the RESET also
going to your microprocessors reset input. That's it. Younow have
all those features listed above on your reset line. So why didn’t 1
use one on the Yasbec? wish I had but it wasn’t outback then. So
next time your circuit needs a reset reach for a DS$1233. Contact
your local Dallas Semiconductor dealer or rep for a data sheet.

New News

Speaking of new chips, a manufacturer of PC chips has
announced an XT in a chip. Not a new processor but an XT.
Complete with CGA, bus interface, floppy interface, and such.
Why would anyone want an XT/PC in a chip? Well if you're
writing code on a PC for an embedded controller why not make
that embedded controllera PC. So if the idea takes off, your next

. ATM transaction could be handled by a XT running MeSsyDOS.
Scary stuff.

New on the Yasbec front is the memory board and backplane.
I’'veordera run of boards soI can have them available at Trenton.
AND...while typing this article] have on my other monitor a nice
digitized image of an Apache helicopter from aDeVryad on TV.
Itsstillalittle rougharound the edges (sotospeak, graphically that
is) butI plan to debut the colour videoboard in the hotel room at
Trenton.] can picture it now, seedy looking characterscomingand
going all weekend long. Especially the wee hours of the night.
Talking about the nice lines. The flushed colours. And oh those
pixels. I'll be lucky if someone doesn’t stage a raid. Deal of the
Century

Havelgot adeal for you! If you have a286 PC orbetter and you
like drawing schematics or even designing your own PCBs, then
thisisforyou. PADS Software, Inc. hasannounced a $50shareware
version of their PADS-Logic schematic capture and their PCB-
PADS pcb layout software. The shareware versionisbasically the
sameas the software selling forovera thousand. So why only $50?
(for both, not each) Well the shareware versions are limited as to
the size of the design they can handle. Two logic sheets for
schematiccaptureand approximately 301Cs forboard layout. The
companies’ idea is to make friends in the low end market so that
if you should need to buy the real thing you will already be sold
on PADS. Sounds like good marketing to me and the real winners
are the hobbyists (midnight hackers) like us who now have
professional software for our home projects. ®

References

PADS Software, Inc.
119 Russell Street
Littleton, MA 01460
(508) 486-9521

(800) 255-7814

Dallas Semiconductor

4401 South Beltwood Parkway
Dallas, Texas 75244-3292

(214) 450-0448

Computer Corner, from page 19

MHz machine. As us Forth people know, they said the same
things about the Novix and RTX 2000.

Allen Freeman gave the meeting commentary at theend of the
day. Chuck gave his fireside chat at dinner and was rather
interesting as always. Allen’s talk focused mostly onwhat or how
wemight change the direction of Forth. The most important point
he made was how Forth lacked integration with existing source
andlibraries of code. Asweall know C has takenover for the most
part. The why of that is the large and included C libraries. When
someone buys Forth they do not get any libraries. However what
they do get is usually all the source code for the Forth and as such
no need for the libraries.

Fornew usersbuyingintoForthhowever, it seemslike theyare
not getting as much as if they bought one of the new C compilers
with it's many megabytes of libraries. If you want to talk about
manuals that are overaninchthick, talk C. WhereI think thisissue
really becomes important is accessing new cards and devices.
Allen rightly pointed out how most hardware vendors are giving
free C code or libraries with their products. If you want to hook
Forth into the new product you will have to code it all yourself. In

The Computer Journal / #55

some cases the code is a linkable module without any source to
translate to Forth.

What the vendors of Forth need to dois make means of linking
in C object modules to their code. It seems to me that might open
up applications in Windows and embedded systems that have
been going to C. The libraries and linking to object modules are
twoitems Forth people have been passing overas not needed. But
are they really not needed?

Indiscussing this topic with friendsit hasbeen pointed out that
PolyForth does support libraries. The problem then is just letting
people know about it. What I really want right now is a windows
based Forth.|am actuallylooking at using Visual Basicasameans
of developing a few quick and simple windows programs. What
I would rather be doing is developing them using Forth. Iwanta
F-PC like windows based system where I could take Forth code
and add the windows features. Basically what | am talking about
is upgrading existing programs to work with windows.

That's notabig request, but then it seems the vendors have not
yet moved their products to windows. My question to them is
what happened to the old statement that Forth is always the first

See Computer Corner, page 23

21

REAL COMPUTING

Computers Get Caller ID, Programmers Get No Respect, and Minix Gets a GUI

By Rick Rodman

Earth-Shattering Discovery

Timemagazinerecentlyannounced: “Why are menand women
different? New studies show that they are born that way.” Who
did these new studies, The Obvious, Inc.? (See TG/ 48.)

Of a similar mindset, there are those who say (with a straight
face, too) that you should not have Caller ID because the caller’s
right to remain anonymous is more important than your right to
know who's calling. Sometimes it seems that this great mission to
protect the rights of the deranged, obscene and criminal elements
goes a little too far in trampling upon the rights of the would-be
normal.

Anyway, if you live in an area in which Caller ID is available,
there is a really simple device available from Bell Atlantic which
transmits the data in RS-232 form. It costs about $50. Now this
device, it seems to me, would be a natural for BBS systems. The
BBS software could maintain (or just print) a log of all the callers
and thetime they called. Then if any irregularity should occur, the
number would be noted. Another possibility is comparing the
telephone number against that used by a user before. However,
the user could be calling from a friend’s computer or from his
office. Remember, too, that Caller ID will only work forlocal (that
is, intra-LATA) calls. However, this could change in the future.

Of course, the greatest present threat to BBSs is the RBOCs,
most notably Southwestern Belland US West, whoareattempting
to force BBSs to pay business line rates. In fact, they have plans
afoot to impose surcharges above business rates. This is because
they are already viewing free BBSs as competition to their as-yet-
unavailableinformationservices. Monopolies cannot competeon

a level playing ground.
Where are all the APIs?

Let’s say you've just invented a fantastic new computer pe-
ripheral. What makes this device really neat is the way it could be
integrated intoother software applications running ona personal
computer. This means software—so you have to develop an
Application Programming Interface, or AP], for the device and
provide some software drivers for it. What do you do now?

Well, if you're like most manufacturers of such devices, like fax
boards and hand scanners, you keep the APIs a deep secret. After
all, aren't they part of your competitive edge? Then you provide
some shlock software with the device that can’t be integrated into
any software applications. Eventually, you have a small part of a
small market consisting of clumsy devices that are impossible to
integrate.

If it was me, I'd give the APIs away. I'd try to make sure that
every programmer in the country had those APIs. Just think—
your device could be directly supported from WordPerfect or
Microsoft Windows. This is how standards are made—because

most manufacturers hold their APIs too close to their chest, the
ones who dare to give them away become the standards.

As for some companies who will provide APIs (in the guise of
“development toolkits”) at very high prices so that only “major
players” can participate in the party, remember that virtually all
innovation in this industry takes place in small companies—
where people design things because they want to, not because
they’re paid to.

Everyone who does any system integration out there is con-
stantly running into these problems. Hey, you manufacturers out
there: If you send me your APls in machine-readable form, I'll be
pleased to put them on a BBS where everyone can access them.
Let’s put them on a CD-ROM! (By the way, where’s the CD-ROM
API?)

Minix News

Some Minix users out there have successfully ported the
Bellcore MGR graphical user interface to Minix. This means that
Minix now has its own GUI and it can join the big leagues. No
longer will people have to keep on asking, “But when will we get
X Windows?”

A couple of caveats apply. I'm told that in 16-bit (read:
standard PC Minix), the 64K code / 64K datalimitation is sosevere
that only fwo windows can be opened. In 32-bit (Minix 386), this
limitation goes away. Presumably under ST or Amiga Minix,
these limitations wouldn't apply in the first place.

Since Minix is not public domain, of course, all of these
additions are distributed in “context diff” form, as I discussed
before. So, first you apply the virtual console patches, then the
patches to those patches; then you take the MGR files and apply
patches to them, then you concoct the whole mass together. Oh,
butbefore you get started on that, if you're running PC Minix, you
have to build Minix 386 first. Set aside a week for that first.

I didn’t mention, either, that there’s no compatibility between
the 16-bit and the 32-bit executables. You need tobuild all new 32-
bitexecutables. It's especially handy to have executables tolog in,
list files, copy files, and so on.

This whole pyramid scheme of context diffs depends on
people being able to “cdiff” against a standard configuration. A
common problem is people considering a particular patch com-
binations “standard”—for example, the virtual console patches
mentioned above are fairly common—but this means that people
without those patches, or with some other patches, may not be
able to use a given patch file.

Another word of caution here: It's very easy to get carried
away and make your own one-of-a-kind operating system that’s
incompatible with everyone else’s.

Alas, I hadn’t received MGR in time for this column. I'll have
my experiences with it next time. I'm planning to implement

The Computer Journal / #55

MGR on the PC-532 using an 0S/2 window as a “graphics
terminal”. The PC-532 hasanannoyingly narrow umbilical to the
universe—a single 9600-baud serial channel is the only way data
can get in or out. Then, due to some unknown problem, haven't
been able to get either Zmodem or Umodem to work. What [
really need is a SCSI floppy drive or controller. (I’s got to come
withan APL)

Linux

Linus Torvalds of Finland has written a Unix clone, which he
calls Linux, and is giving away. This OS is a pretty good clone of
BSD, with 386 dependencies (such as the MMU) coded right in.
Now as this column has stated before, the 386 MMU is a blatant
rip-off copy of the 32532’s, which in turn is asimplified version of
the VAX's, sosome work is underway to port Linux to the PC-532.

Linux has been causing a sensation on the Internet, for several
good reasons. The main reason is, of course, it's completely free.
Linus wrote it completely for fun, on his own time. He has no
objection to people giving it away or enharcing it in whatever
way they see fit. And, it's a more Unix-like design than Minix,
which means that porting tools to it has proven easier (for those
who have it).

Andy Tanenbaum argued recently that Linux is an “obsolete
design”, because it is “monolithic”; that, among OS designers, the
microkernel design is ascendant. Ina microkernel, the kernel does
nothing but switch tasks and message traffic; memory manage-
ment, file systems, et al. are outside the kernel. The most
well-known microkernel isMach. At any rate, hesaid that “Minix
is a microkernel-based OS” but it's “only a hobby” for him.

Of course, it’s evident that, because of Minix’s original design
around the 8088 processor, Minix is a poor implementation of the
microkernel concept. And I'm sure many people wish they could
have hobbies as remunerative as Minix has been for Andy.

One reason that Minix is a poor implementation of the
microkernel concept is that memory managers and file systems
cannot be dynamically loaded and unloaded. The kernel and the
file system are actually tied together by several knotty strands of
code. Oneof my design features for Bare Metal (mentioned in TGJ
41) was separate “managers” which could be loaded to support
different directory formats, such as MS-DOS, CP/M, et al.

While I agree that Linux will be difficult to port to different
environments, it should be pointed out that porting Minix isn't a
piece of cake, either. Unlike a true microkernel, no part of the OS
can be brought up without all the others.

WhatwithMachbeing released in AT&T-free form, MGR, and
Linux all happening, one wonders whether the Free Software
Foundation will ever get around to releasing their OS, which they
reportedly now call “Hurd”. (Presumably, a“hurd” is a group of
“gnus”?)

Computer Corner, from page 21

language available on a new system. I guess the vendors do not
consider windows a NEW system then.

MOVING

Well, I have said enough this month, so guess it is time to start
packing my books and very heavy manuals again. I am not
looking forward to moving again but hopefully this time it will be
many years before I have to do it again.@

The Computer Journal / #55

More C sickness

Consider this statement (x and id are ints):
x += ((1d - 10000) * 10);

The variable “id” varies between 10000 and 10020, let’s say.
Since the subtraction isin parentheses, the maximum value which
should be multiplied by 10 is 20, right? Well, that's not the way
Microsoft C 6.00a sees it. No, Microsoft reports reports an “over-
flow in constant arithmetic”—as though the parentheses weren't
there. No excuse this time—this is a bug.

Put thisin your unofficial Microsoft bug list. If you want to get
an official Microsoft bug list, you have to pay $300 for access toa
bulletin board. Personally, I think they’re abunch of Stalinists. At
least they haven't started threatening people who reveal their
bugs to the public. Yet.

Other software vendors are pretty Stalinist, too. Oracle, for
example, prohibits any database benchmarks from being pub-
lished, besides their own (laughable) figures. I am free to tell you
Oracleisslower than molassesinJanuary—but I can'ttell you how
much slower.

That’s why you should go witha free-world OS like Z-system.
You can pick up your phone and talk to Jay Sage. You can ask
aboutbugsand performanceall you want,and you can get honest
information in the pages of TGJ. Yet another advantage of Z-
system over Microsoft Windows—support!

Next time

Well, I didn’t get to the image compression/decompression
stuff yet. But, lookingback, havent been too accurate in predict-
ing the next column anyway.

Next time [hope to have more facts on MGR and, hopefully,
Linux. If you're interested in experimenting with these, or with
other items discussed, drop me a line and we’ll see how we can

fix you up.@®

When people ask me, “What one
factor do you believe has
contributed most to the growth
and influence of your
organization?” I don’t have to
stop and think about an answer.
Unquestionably it has been the
emphasis laid from the very
beginning upon human
relationships—toward the public
on the one hand, through careful
service, and giving the utmost in
values; toward our associates on
the other hand.

—]J. C. Penney

Remapping Disk Drives through the Virtual BIOS

By Roger Warren

INTRODUCTION

AsaZ-NodesysopandbelieverinbothMurphy’s Law and the
concept of the self-fulfilling prophesy, I've resigned myself to the
monthly task of performing a full backup of my system'’s hard
disk. This task consists largely of sitting in front of the machine for
hours at a time listening to the floppy drive step in and out
(between the directory and the storage area) with occasional
breaks during which fresh disks must be inserted into the drive.

During one such monthly labor of love (read paranoia), I
reasoned thatif I relocated the disk directory of mybackup floppy
to a central track location, less time (on the average) would be
spent stepping to and from the directory. Simple arithmetic
convinced me that I could complete my 40 Meg backup in
significantly less time—by as much as an hour—even with step
rates of a few milliseconds per track.

With that inspiration to motivate me, I setabout designing and
implementing a few simple changes to my Ampro BIOS that
allowed me to selectively enable or disable the relocation of disk
directory on individual floppies. I was quite pleased with the
results. These changes were documented and released to the
public several years ago.

Recently, | was asked to discuss what I had done in an article
for TGJ.1was not too certain that such anaarticle would be helpful
to more than a few people—those who have their BIOS code and
aren’tintimidated by the prospect of makingand installing a new
BIOS. However, in the same issue of TGJ that my future article
was announced, Jay Sage’s column covered the NZCOM Virtual
BlOSand waysof usingit. | wasstruck with the simplicity of being
abletoincorporatethegeneral scheme of my disk track remapping
into a loadable module and, most importantly, one that was not
machine-specific. Such an implementation would be useful to
many and painless to install and use.

This article documents this NZCOM track remapping ap-
proach. There is sufficient discussion about the technique and
detail in the listings to allow anyone having the wherewithal to
modify his or her BIOS (if that is preferred or if NZCOM is not
being used) to do so, too,

THE BOTTLENECK

Floppy disks on CP/M machines are logically partitioned into
three (and sometimes four) areas:

* Reserved tracks (also called System or Boot tracks)
* Directory tracks

* Storage tracks

* Spare tracks (the ‘sometimes’ category)

These logical areas are arranged physically in the order in
which they’re presented above. The System tracks are at the outer
tracks of the diskette (the tracks having the lowest physical
address), the Directory tracksare next, and the Storageareabuilds
inward (toward higher numbered tracks) from the end of the
directory. The spare tracks, if provided, occupy the innermost
track area. They're a hold-over from the IBM 3740 (8 inch) disk
format specification used in the older CP/M machines. These
tracks were set aside to be swapped in as replacements for tracks
that went ‘bad’ in the storage area. I'm not aware of any CP/M
implementation thateverused them. Spare tracks are not setaside
by any machine I've run into that uses 5 1/4 inch drives.

Itis the physical location of the directory tracks thatisaburden
on disk system performance. When writing files to disk, every
time the current disk allocation block become full, the BDOS must
read the directory, allocate another storage block, update the
directory, then seek the newly allocated block. When reading a
file, the directory must be referenced to locate the file’s next
allocationblockonce theend of the currentblockis reached. As the
disk becomes full and data for files are placed in tracks further
‘inboard” on the disk, it's a longer and longer trip between the
storage tracks being used and the directory. Even with track-to-
track step rates of a few milliseconds, the round trip is time
consuming. The activity is quite noticeable if you're listening to
the disk drive!

If one were to “fake out” CP/M by swapping the directory
tracks with a couple of tracks in the middle of the disk, this
bottleneck would be eliminated. With the directory location
swapped in this way, the directory would never be further away
from the current track position than half-way across the disk. But
which tracks should be swapped?

Arbitrarily choosing tracks wouldn’t be optimal for all cases.
Of course, 48 TPI and 96 TPI disks have different numbers of

tracks. Some BIOSes treat double sided

Roger Warren is a former metallurgical engineer who has been making a living as a
system software and hardware engineer since being introduced to computing in the early
70's. He's been in the aerospace and defense fields for a majority of that time, working
primarily with embedded controls and radiation-hardened memory systems.

Roger has been active in the CP/M and ZCPR communities for several years, having
developed and released several enhancements tothe Ampro BIOS and, more recently, LZH
compression for CP/M (CRLZH and UNCRLZH). He can be reached for comment on his

disksas having twice the numberof tracks
asasinglesided disks, whileother BIOSes
handle double sided diskettes by dou-
bling the number of sectors per track
Clearly, the tracknumber(s) of tracks tobe
swapped with the directory are system
dependent.

Z-Node, “The Elephant’s Graveyard” at 619-270-3148 (PCP: CASAD).

The Computer Journal / #55

Listing 1 BIOS label and mcdified vector table

nane ('BIOSW’) ; NECOM needs ‘BIO’
3 +..as lot 3 chars.

common /_ENV_/

s3env:

cep oqu s3env+ifh

dos oqu s3envi42h
common /_CBIO_/

cbios:

Beginning of N3BIO. The header structure is absolutely
crucial to the correct operation of NE-COM.
DOR ‘T IT.

.~ W4 W

; Beginning of Header........

start: ip boot ; Cold boot
wboote: jp wboot
ip const
ip conin
ip conout
jp 1list
ip punch
ip reader
ip cbios+24 3 Home
ip swpseld ; Seldsk is performed below
ip swptrk s Settrk is performed below
ip cbios+33 ; Setsec
jp cbios+36 ; Setdma
jp cbios+39 3 Read
ip cbios+42 ; Write
ip listst
jp cbios+48 3 Sectran
ds (30-17)*3 ; Room for 30 jumpe

Listing 2 Data definition and SELECT DISK routine

; TRACK SWAPPING begins here. Pirst, various equates,
; offsets, and storage definitions.

dpbptr equ 10 DPB ptr is 10 bytes
into DPH

.
’
.
’

; DPB offsets:

spt aqu 0 ; Sectors per track

bsh aqu 2 ; Block shift factor

dam equ 5 ; 8torage block max

cks oqu 11 3 Check vector sisze

off equ 13 ;3 Offset

swapfl: db 0 ; Plags whether this disk
3 has tracks swapped

offset: ds 2 ; Holds offset (# reserved
5 tracks)

halftrax: ds 2 ¢ Holds computed half-way
; track

lastdrive: db 0ffth ; Holds last drive selected

; An ID string so that a support utility which wants to
; manipulate SWAPVEC can determine that the BIOS is
; installed.

db ' SWAPVEC’
daw 0000h s Swap Vector LSB is drive
: A, MSB drive P.

swapvec:

Swapping code begins with disk selection. If the drive
being selected is the same as the last one and there has
not besn a warm boot since its last access, then the
current swapfl, offset, halftrax, are valid.

e we we we

swpeeld: 14 a,(lastdrive) ; last drive selected
cp c ; Bame as last drive?
1a a,c ;s Move to A
14 (lastdrive),a ; Save
ir nz,swsl ; If not zero, new drive
14 a,e ; Same drive, test
; nhew mount
cpl ; Plip bits
bit 0,a ; T flag is set if
; old mount
swel: push af ; Save Z flag
call cbios+27 ; Invoke the BIOS, get
’

the pointer (to H/L)

3 Check for bad disk select

1d a,h ; High of vector
or 1 ; Test vector for 0
jr ns,oksel 7 Jump if select OK

; Bere if SELECT failed. Might have been a LEGAL drive with
; an IO error. Protect against that by changing lastdrive.

dec a ; Was 0, becomes OffH
1ld (lastdrive) ,a ; Zap lastdrive
pop af ; Tidy stack
ip swapex ; Was bad select!
; Skip itl
oksel: pop af ; Get flag from stack
jp E, SWapex ; Zero if same drive and
; old mount--just exit
push hl ; Save for exit
push ix ; Save the IX register
xor a ; Assume disk isn’t
; swapped, get a zero
14 (swapfl),a ; and Clear the flag

; Determine whather we’re swapping this disk

id a,(lastdrive) ; last drive

neqg ; Make —(lastdive)

add a,lé ; There are 16 drives.
; 1l6-lastdrive is number
; of bits to shift in
; swapvec

14 b,a ; Copy to counting
; register

1d ix, {(swapvec) ; Get the swap vector

flglocs add ix,ix ; Move bit to carry

djns flgloc ; Continue shifting till
;3 count done

ip nc,exitix ; No carry, drive not
3 track swapped

id de,dpbptr 3 Get offset in DPH of
; DPB pointer

add hl,de ; Point to DPB pointer

1d e,(hl) ; Get DPB pointer low

inc hl ; Goose HL

1d d, (hl) s Get DPB pointer high

push de s Transfer DE to ...

pop ix s IX

Check for fixed drive (check size will be 0 for fixed
drives)

~ we

The Computer Journal / #55

A SOLUTION

Ifone were todivide the Storage tracks of a disk roughly in half
and reverse the track numbers on the first half, the directory
would be roughly at the center of the disk. Furthermore, the disk
would fill up from the centeroutward until the outerbound of the
Storage area was reached, then continue filling from the center
inward until the storage limit of the disk was reached.

Although CP/M “thinks” in terms of logical tracks which, for
diskettes, originally corresponded to physical tracks, the logical-
to-physical mapping is, really, up to the BIOS. The differences in
how BIOSes treat dual sided diskettes, mentioned above, are
examples of this BIOS-dependent mapping (and the freedom the
BIOS has in track assignment).

The reversing of the track numbers of the first half of the
diskette is merely a logical-to-physical mapping. There is a
precedent for this: the BIOS sector translation via which CP/M
allows for a logical-to-physical sector number remapping to

improve disk performance. There is even a specific BIOS entry
point that BDOS uses to perform the sector translation.

Since the NZCOM virtual BIOS resides between theBDOS and
thesystem’s BIOS, it can provide the two necessary portions of the
track re-mapping proposed above. These portions are:

1. Determination of the track number of the center of the
diskette (a system-dependent number) and,

2. Translation of track numbers for the tracks in the first half
of the disk.

When a disk is selected, the BIOS returns the BDOS a pointer
to a table of information. Through this table (and tables the table
points to) all of the information necessary to determine the track
number of the ‘center’ of the selected disk is available. The
NZCOM virtual BIOS can use this information to compute this
track number and leave it behind for subsequent use by the
NZCOM virtual BIOS track selection routine.

1d a, (ix+cks) ; Get low of check size

or {ix+cks+1) ; And the high

jr nz,nothard ; Not zero if this is a
7 floppy

Now if we got here, the guy has specified that a hard disk
is swapped. Turn off the bit in the vector that selects
this disk.

“~ W we

1d a,(lastdrive) ; last drive
neg ; Make —(lastdive)
add a,lé6 ; There are 16 drives.
;3 1l6-lastdrive is number
; of bits to shift in
3 swapvec
1la b,a ; Copy to counting
; register
1d ix, (swapvec) ; Get the swap vector
14 hl,0 3 Clear hl
acf ; Set carry so a bit is
3 shifted into the HL
flglec2: adc hl,hl ; Shift bit into HL
add ix,ix ; Next bit to carry
dinz flglc2 3 Continue shifting till
r

count done
; Now offending bit is in carry
cef : So...reset it

Continue shifting from IX to HL until the original bit set
in HL pops out. This will signal completion of all bits.

-
’
.
r

flgle3: adc hl,hl ; Continue on
jr c,flglcd ; Jump if done
add ix,ix ; Get another bit
jr flglc3 3 loop

flglcd: 1d (swapvec),hl : Save new vector
ir exitix ; And exit

; Bere to continue calculations for a floppy

nothard: 1d 1, (ix+off) 3 Get offset low
1d h, (ix+off+l) ; Get offset high
1d (offset), hl ; Save offset

; Now setup for computation of # tracks in this disk’s
; storage area

1d e, (ix+spt) ; Low of sectors/track

1d d, (ix+spt+l) ; High of sectors/track
1d 1, (1x+dsm) ; Low of storage blk max
1d h, (ix+dem+l) ; High of storage blk max
inc hl ; # of storage blks
1d a, (1x+bsh) ; Get block shift count
add a,16+1 ; Add 16 for divide cnt
; (+1fordec@preshift)
1d b,a ; Transfer to counting
; register
push hl ; Transfer RL
pop ix ;3 ...to IX

; Now begin divide of IX by DE. HL:IX is used as 32 bit

; quantity. IY is quotient.

Pirst, shift till at least one bit is pushed out of IX.
This will make the code run faster.

.
’
.
’

preshift: add ix,ix ; Shift
dec b ; Count
jr ne,preshift ; Loop
push 1y ; Save IY so it canbeused
; for gquotient
1d iy,0 ; Quotient starts at 0
ld hl,1 ; HL:IX is tobe divided
; (HL starts at 1.
; We've shifted until a
; single bit popped out
3 of IX. It was destined
; for HL LSB).
or a ; Clear carry....
jr divl ; And warp into division
; loop
divloop: add iy,iy ; Shift quotient
add ix,ix ; Shift divdend
adc hl,hl ; ...propagate carry
; (Note: leaves carry
; CLEAR)
divle sbc hl,de ; Compare dividend to
; divisor
jr nc,addq ; If no carry, HL stands.
; Add 1 to Quotient
add hl,de : Otherwise, restore
; original H/L
ir div2 ; «..And continue below
addqgs inc iy ; Goose quotient
div2: djnz divloop ; Repeat until
; count exhausted

; Divide done. If HL:IX is non-zero then add 1 to quotient

The Coinputer Journal / #55

When a trackis selected, the NZCOM virtual BIOS can use the
previously computed “center” track number to translate the track
number before presenting it to the BIOS.

The NZCOM virtual BIOS must supply three other important
functions:

1. It must determine whether or not track remapping is
desired for a particular drive,
2. Itmust provide for the presence of the System tracks (they
: shouldn’t be remapped), and
3. It must protect against the inadvertent selection of
remapping for hard disk partitions. THE TRACK SWAP-
PING VIRTUAL BIOS

While the concept the track swapping virtual BIOS is not too
hard to follow, it winds up that theimplementation requires more
than just a handful of instructions. This stems primarily from the
fact that while all of the information required to determine the
number of tracks in a disk’s Storage area is available via the
pointer returned by the select disk routine, the data must be
massaged to yield the number(s) required to perform the swap-
ping. There is also a fair amount of code required to determine
whether swapping is enabled for a disk and to protect against
inadvertent selection of remapping for hard disks.

The code, itself, is rather straight-forward. The comments in
the code include sufficient detail so as to make any “blow-by-
blow” description here redundant. However, there are some
points I'd like to stress. There is also some general information
about the calculations and the BDOS/BIOS interface that isn’t
presented in gory detail in the listings that should be presented
here. Thismaterial willbe helpful to those wishing tofine-tune the
track swapping for their machines.

Listing 1 presents some of the front matter of the virtual BIOS
code and the virtual BIOS jump table as modified for the track
swapping code. The changes from the “stock” virtual BIOS code
are few: only the module name and jumps for the Select Disk and
* Select Track routines are modified. However, the listing is in-
.cluded for completeness’ sake.

Listing 2 presents the track swapping Select Disk routine and
related constants and variables. The Select Disk routine performs
most of the work in the track swapping BIOS. It intercepts calls to
the actual BIOS and determines whether swapping is enabled for
the disk being selected. If so, the number of tracks in the storage
area of the disk is computed and, from that, the track address of
the “half-way” point on the disk. This value (HALFTRAX), the
number of system tracks (OFFSET), and the swapping enabled/

disabled flag (SWAPFL) are left behind for the Select Track
routine.

Trackswapping is enabled onanindividual CP/ M drivebasis.
A 16bit quantity SWAPVEC, is employed to indicate which
drives have swapping enabled. The least significant bit of
SWAPVEC corresponds to drive A, and the most significant to
drive P. SWAPVEC is located immediately before the Select Disk
code. This allows it to be located by a separate utility program,
listed below, which manipulates the bits in SWAPVEC. The
character string “SWAPVEC” precedes SWAPVEC in memory.
Theutility program checks forthe presence of thisstring (toassure
that the track swapping BIOS is loaded) before attempting to
modify memory. This program has simple command line opera-
tionand canbe incorporated into your STARTZCM start-up alias.
Optionally, SWAPVEC can have an assembled-in default value.

I'dliketocall attention to the use of NEW MOUNT flag passed

to the BIOS from the BDOS at Select Disk time. When BDOS calls

the BIOS’s Select Disk routine, the least significant bit of the E
register is 0 if the drive hasn’t been selected since the last warm
boot, and a 1if it has. This item of the BDOS/BIOS interface is not
well documented in most of the CP/M manuals I've run across,
which is why I'm calling so much attention to it here. Indeed,
some manuals don’t mention it at all. It is, however, faithfully
duplicated in the various BDOS replacements I've examined.
BIOSes that permit the user to read diskettes of several different
formats in the same drive use this flag to determine whether the
rather lengthy process of determining the format of the diskette
should be performed. The virtual BIOS uses the flag to help decide
whether the number of tracks on the drive needstobe determined.

To minimize the impact of the additional code in the track
swapping virtual BIOS on system performance, the Select Disk
routine first checks to see if the drive being selected is the same as
the last one selected. If so, the disk sizing calculations need notbe
redone. However, if this is the first selection of this drive since a
warm boot, the disk parameters could change if the disk has been
swapped. Therefore, when the NEW MOUNT flag indicates that
this is the first selection since a warm boot, the calculations are
performed even if the drive is the same as the previously selected
one.

If the BIOS Select Disk routine returns an error, the virtual
BIOS's previous drive variable (LASTDRIVE) is set to OFFH. This
is done to protect against true /O errors on otherwise valid
drives. If the driveis valid but the user left the drive door open, an
1/0 error would occur and the disk sizing calculations would be
aborted. If he then closed the door and continued the operation,
the next Select Disk call would likely be for the same drive. By
forcing LASTDRIVE to OFFH when an error occurs, the code

; (round up). This is done since the last track of disk
7 may only be partially used. No need to test IX since
; >16 shifts will cause IX to be 0!

la a,h ; high

or 1 3 continue test

jr s, evennml ; Zero if was even
;7 multiple

inc iy i Add 1 to round up

evermml:

i Now IY is # of tracks in storage arsa. Divide by 2 to get
7 half-way point. First half will have reversed track #'s.
; First add 1 to make even if quotient is odd.

push iy 3 Transfer...
© pop hl ; Quotient to HL
ine hl ; Md 1

srl h ; Shift right
; (divide by 2)
rr 1 ; Finish shift of H/L

Finally, we want to FAVOR the directory track(e). Add 1
to the computed ‘halfway’ point. However, there is need
to decrecment the computed halfway point to make the math
at the track re-mapping nice, so a +1-1 is a net change
of 0.

e we we we we

1ld {(halftrax),hl ; Save # tracks at
;7 half-way point

pop iy ; Restore IY

ld a,l ; Set swapped flag

1d {swapfl),a ; Into memory
exitix: pop ix ; Restore IX

pop hl } Get saved DPH pointer
SWapexs ret 3 Return to sender

The Computer Journal / #55

assures that the disk sizing calculations will be performed for the
drive if it's the next drive selected.

To protect againstinadvertently enabling of swapping forhard
disk drive partitions, a separate trap for hard drives is included.
Swapping tracks is possible on hard drives, but to do so on an
existing drive would wreak havoc. When the code detects that the
drive it is performing calculations for isa hard drive (signaled by
the fact that the directory checksum vector size is 0), the trap code
resets the enable flag in SWAPVEC for that drive. By doing so,
subsequent selections of the drive will not waste time making the
same discovery over and over again.

The real ‘work’ in the Select Disk routine is the calculation of
the number of tracks in the diskette’s storage area. This is doneby
dividing the number of sectors per track into the number of
sectors in the storage area of the disk. The number of sectors per
track (SPT) is available in the disk parameter block (DPB). The
number of sectors in the storage area is not directly available and
must be computed by multiplying the number of storage blocks
in the drive by the number of sectors per storage block. The
number of sectors in the storage area is determined by adding 1
to the maximum storage block number in the DPB (DSM +1). The
number of sectors per block is determined from the block shift
count (BSH) in the DPB. BSH is power to which 2 must be raised
to yield the number of sectors per block. Shifting (DSM+1) left
BSH times yields the number of sectors in the storage area. By
adding BSH to the loop counter of the division routine (normally
16), this shift operation is incorporated into the division. Note that
the last track in the disk’s storage area may be only partially used.
Code must be added to ‘round up’ the computed number of
tracks if the division leaves a remainder.

Next, the “half-way point” track number for the disk is
calculated. The number of tracks in the storageareaisincremented
by 1and dividedby 2. Ifthenumberoftracksisodd, theincrement
operation will assure that the extra track will be placed in the
“lower” half of the disk. This will be slightly more favorable, since
it will more ‘centrally’ locate the directory.

Finally, the “half-way point” is adjusted to favor the location
of the directory. The directory (usually 1 to 2 tracks in size) is
accessed a lot. If there are X tracks in the storage area of the disk,
X-2 are actual storage (assuming 2 directory tracks). So, weadd 1
to the computed half-way point. However, there is need to

decrement the computed half-way point to make the math at the
track re-mapping nice, so there’s a net change of 0. The reasoning
behind this adjustment might be counter-intuitive, so consider
this example:

For 100 storage tracks and 2 directory tracks, the half-way
point is 50. By adding 1, the new half-way is 51. Tracks 0-50are
reversed, 51-99 arenormal. Considering thenature of thestorage
area use, this means there are 49 tracks of data, 2 tracks of
(centrally located) directory, the 49 more tracks of data.

Listing 3 presents the track swapping Select Track routine and
related constants and variables. The Select Track routine merely
adjusts the track number (if swapping is enabled for the current
drive) and passes the new number on to the BIOS.

THE SUPPORT UTILITY

Listing 4 presents a support utility to manipulate SWAPVEC.
The help screenin the program listing details program operation,
so no additional detail will be supplied here. However, the
statement that calculates the address of the “SWAPVEC” charac-
ter string preceding SWAPVEC:

swapvec = (* (char **) ((*(char **) 1)+25))-9;

canbe a very obtuse line for the ‘C" novice, so an explanationis in
order:

The value 1 is cast as a pointer to a character pointer. Taking
what it points to [*(char **)1] gets the contents of location 1 - the
address of the BIOS warm boot location - as a character pointer.
Adding 25 to the pointer yields the address of the location that
holds the address of the select disk BIOS routine. By casting this
valueasa pointer to a character pointer and taking what it points
to, we finally wind up with the address of the first instruction of
the select disk routine. If the SWBIOS is installed, the select disk
routine is immediately preceded by the characters 'SWAPVEC’
and the 2 byte swap vector. Subtracting 9 from theaddress of the
select disk routine will yield the address of the first character of
the string.

Listing 3 Track selection and remapping code

; Swapping code is completed with the track select. All of
; the important work has been done by the SELECT DISK code.
; Here, we only need to remap the track.

If swapping is enabled, the track is compared to the offset
; (# reserved tracks). If the track is in the reserved area,
; nothing is done. Next, the track is compared to the value
of ‘halftrax’, computed during the disk select. If the

~. we Wb %o wa we

; reserved area

Now, track is normalized, having a value from 0...highest
track. Subtract this from halftrax, stored above. This
will result in an input value of 0 yielding a value of
‘halftrax’, 1 yielding halftrax-l, etc. A value of halftrax
yeilds 0. If carry is set as a result of this operation,
then we’re accessing the upper half, so original track was
ok.

track is in that area, the track number is altered. If the ex de,hl ; HL to DE
track is higher than ‘halftrax’, it is not altered. 1d hl, (halftrax) ; Get half
sbe hl,de ; (Carry was clear)
swptrk: 1d a, (swapfl) ; get flag ir c,trakok ; If carry, track is in
and 01 + Swapping? ; second half of disk
ir %, trakok ; Jump if not
; New track number in H/L. Add back in offset and transfer
push be ; Transfer track :+ to B/C
pop hl ; ..to HL
1d de, (offset) ; Get offset
1ld de, (offset) ; Get offset add hl,de ; Add it back in
or a ;s Clear carry... push hl ; Transfer to...
pop bc H . BC
sbe hl,de ; Track less offset...
jr c,trakok :+ If carry, then accessing trakck: jp cbios+30 ; go select track
28 The Computer Journal / #55

Listing ¢ Enable/Disable support utility

I+
SWAPVEC
A quick-and-dirty program to manipulats the SWBIOS track
mapping snable vector from the 3CPR command line.
Version 0.0
01 Sept 91
Developed at the Elephant’s Graveyard by R. Warren

*/
#include “stdioc.h”

char *swapvec;

char id[]="SWAPVEC":
char i,operation,*argl;
unsigned bits,mask;

main(arge, argv)
int argc;
char **argv;
{
putchar(‘\n’); /* throw CR and LF */

operation = 0;
if (argc <2) operation=l;
olse {
argls+(argv+l);
if ((*argl >= 'R’) && (*argl <= ‘7))
operation = 2;
olse if ((*argl I= */') && (*argl 1= ¢2'))
operation = 3;
}

if (operation) (

/* Locate swapvec */
swapvec = (* (char **) ((*(char **) 1)+25))=9;
for (i=0;1<7;i4+)
if (dd[i] t= *swapvect++) {
fprintf(stderr, “Cannot locate swap vector.\
\nMake sure track swapping bios is installed and try again.\
\n\n");
exit(1l);
}

}
switch (operation) {
case 1:
printf(“Swap vector is %04xh (LSB is drive A)\n”,
*(unsigned *) swapvec);
break;
case 33
sscanf (argl,"Sx”,&bits);
printf(“Swap vector set to 104xh (LSB is drive A)\n”

,bits);
*(unsigned *) swapvec=bits;
break;
case 2:

bite=+*(unsignaed *) swapvec;
while ((*argl>='R’) || (*argl <= ‘1’)) {
imt(argl+l)='A’ 3
if((L < 0) || (1>15)) break;
mask = ((unsigned) Oxl) << {i;
if (*argl == ‘§’) bits |= mask;
else if (*argl == ‘R’) bits &= -mask;
olse bits “= mask;
argl += 2;
}
printf(“Swap vector set to $04xh (1LSB is drive A)\n”
,bits);
*(unsigned *) swapvecsbits;
break;
default:
printf (“SWAPVEC vO0.0\n\n\
Usage:\n\
SWAPVEC = displays current swap vector\n\
SWAPVEC <hexvalue> - set swap vector to hex value\n\
SWAPVEC <Set_Reset_Toggle string> - Set, reset or \
toggle drives per string\n\
SWAPVEC / - display help\n\
SWAPVEC ? = display help\n\n\
<Set_Rasset_Toggle string> is of the form:\n\n\

8d, Rd or Td where d is a drive letter (A~P)\n\n\
The individual elements of the string can be\n\
concatenated (no spaces).\n\n\

eg:\n\n\

SWAPVEC SFTGRC\n\n\

will SET the bit for drives P, toggle the bit for\n\
drive G, and RESET the bit for drive C.\n\n”");

} /* end switch */

CARE AND FEEDING OF TRACK-SWAPPED DISKS

I'll not detail how to prepare and load NZCOM virtual BIOSes.
Thatinformation is presented well enough in the NZCOM manu-
alsand does not need tobe presented here. Sufficeit tosay that the
trackswapping BIOS canbe madeanintegral partof yoursystem,
and that one can set, reset, or view the track remapping enable
flags for the system drives via the utility discussed above. This
utility can be run by your STARTZCM alias, so that your system
can ‘load’ with track remapping enabled for selected drives.

. With the track swapping virtual BIOS installed, one is free to
enable and disable the feature for any floppy on the system. The

following tips will help keep you out of trouble:

Track swapping has nothing to do with system'’s disk format-
ting. However, to avoid any unforeseen problems, it’s probably
better to not enableany swapping when using your system’s disk
formatter or disk test. (They may not work with NZCOM
installed, anyway!)

The BDOS won't gracefully handle what it considers GAR-
BAGE in the disk directory, sodon’t try to turn a ‘used’ disk into
a track-swapped disk without preparing it first (old data on the
diskwill garbage-up thetrack-swapped directory). To preparethe
disk, merely reformat it. I'vealsoincluded a utility in the support
library (see PARTING SHOTS, below) that will perform the
necessary directory area initialization.

The Computer Journal / #55

Track swapping selected on a CP/M logical drive basis - not
onaphysical drivebasis. If your system supports drive swapping
or reassignment, be aware of that fact. If your system has the
ability to read ‘foreign format’ disks, track remapping shouldn’t
be enabled for the drive used for foreign format disks.

FINE-TUNING FOR SPECIFIC SYSTEMS

The track remapping scheme I chose is probably the most
simple-minded one, but it is very good choice for my system and
purposes. A variety of remapping schemes can exist. The only real
requirement is that there be a one-to-one mapping of logical and
physical track. Some schemes may be better than others for
specific machines and/or specific applications. Some may be
worse.

Recently, Jay Sage asked why I hadn’t mapped things so that
the directory was in the center of the drive with even numbered
tracks mapped ‘inward’ from the center and odd numbered
tracks mapped outward. With that kind of scheme, data tracks
would be closer to the directory as the disk filled up, giving an
even better performance enhancement (my mapping scheme
only improves performance on disks that are more than half full)
Frankly, this hadn't occurred to me. It seemed like a wonderful
idea, and I quickly tried it.

See Virtual BIOS, page 32

The Bumbling Mathematician—Part 1

Big Numbers

By Frank C. Sergeant

I have an urge to write about math. When | use the word
“mathematician,” luseitveryloosely.Iwantto dobig math things
with small computer resources. Since Forth is my favorite lan-
guage, | want to use Forth, particularly my Pygmy Forth, for the
examples. Pygmy is available for MS-DOS, but not yet for CP/M.
So, the first thing I want to do, which I absolutely cannot do now,
is to prepare a version of Pygmy for you that runs under CP/M.
1f1 could do that first, more of you could run the examples I wish
to present. However, perhaps, if | present the code and explana-
tions clearly enough, even if you don’t have access to Pygmy, you
will be able to use these ideas in assembly language or whatever
other language you prefer. Unfortunately, I am not going to be
able to present code that is as pretty as I'd like.

Why Big Numbers?

By big numbers I mean numbers with arbitrarily high preci-
sion. Would like to do your calculations with 50 digits to the left
of the decimal point and 400 digits to the right of the decimal
point? Well, this big number approach will let you. Why would
you want to do this? I don’t know. Because it is possible? Because
you want higher precision than any of your other math packages
give you? Because you object to the price of math co-processors,
and you object to buying a PC into which to plug the co-
processor?

Some months ago | wanted to calculate logarithms to 40
decimal places. So, | dashed off the enclosed code tolet me handle
big numbers.I had the choice of buildingafloating pointorafixed
point package.I picked fixed point. Itis not fast, it is not pretty, but
itallows you toset thenumber of digits toeach side of the decimal
point to just about any size that will fit in your computer’s
memory.

The Details

This package allows you to create “registers” and double
“registers” named whatever you wish. For general purpose
registers | usually name them X, Y, Z, etc. I usually name the
double registers A A, BB, etc. to remind me that they are double.
These registersare really strings of bytes in memory. Let's assume
you decide you want 10 places to the leftand 20 places to the right
of the decimal point.

30 CONSTANT #DIGITS
20 CONSTANT #FRACS

(set total number of digits)
(set number of digits to right)
(of decimal)

Theabovecodesets the total numberof

Then we'll set up some registers and double registers.

N: X N:s Y N: 2
DN: AA DN: BB

(make some registers)
{ make some double registers)

X, for example, is 30 bytes long. Each byte holds a single
decimal digit. Wasteful, you say? After all, we could stuff 2
decimal digits into each byte. The reason for using a full byte for
byte holds a digit no greater than 9, each byte will also hold the
sum or product of any two digits. Thus, when we add two
registers, we first add corresponding bytes together, without
worrying about carries. Then we “normalize” the destination
registersothat eachbyte contains anumber(digit) no greater than
9. The word ADD does both of these steps. Since the procedure for
borrows is different than for carries, two words are available:
NORMALIZE+ and NORMALIZE-. SUB uses NORMALIZE-.
Suppose you want toadd the contents of register X to the contents
of register Y.

X Y ADD

does just that, leaving X unchanged and leaving the sum in Y.

Y X SUB

Subtracts X from Y, leaving the difference in Y and leaving X
unchanged.

Multiplicationand divisionarealittle trickier. Thisiswhere the
double registers become necessary.

Y X AR MUL

willmultiplyY times Xand place the productinto AA . Itwillleave
Y and X unchanged.

Y X DIV

divides Y by X, leaving Y and X unchanged, and always placing
the quotient into the double register named QUOTIENT.

Inaddition to adding, subtracting, multiplying, and dividing
two registers, we need the ability to initialize the registers, com-
pare them, copy them to one another, and print their values. The
word X! (pronounced “x store”) initializes a register. While we
might like to do something like

XXy

digits to 30 and the number to the right to
20 (thus the number to the left is 10).

Many years ago Frank saw a proof that the square root of kwo was irrational, and,
while he may never be a mathematician, he has developed a great deal of respect for those

who are mathematicians.

The Computer Journal / #55

this would only work for small numbers (16-bit numbers). What
if we want to initialize the register to something like
1,392,459,667.00000000011239? So, X! gets the initialization value

from a string, as follows:

~ 1,392,459,667.00000000011239" X X!

The Pygmy Forth Code

30 CONSTANT #DIGITS
20 CONSTANT #FRACS

‘.« CONSTANT PT (decimal point character)
#DIGITS 2* CONSTANT D#DIGITS

#DIGITS 1- CONSTANT #DIGITS-1

D#DIGITS 1- CONSTANT D#DIGITS-1

#DIGITS #FRACS - CONSTANT #WHOLES

: N: CREATE (~) (=~ reg) #DIGITS ALIOT ;
: DN: CREATE (-) (- dreg) D#DIGITS ALLOT ;

DNt AR (double accumulator for mult & div)
: 2ERO (reg -) #DIGITS 0 FILL ;
1 DZERO (reg -) D#DIGITS 0 PILL ;

:t Xt (§reg =)

(®.g. " 12345.893" X X!)

(number must be positive number, with a decimal point)
DUP ZERO

PUSH COUNT 2DUP (a # a #)

PT -LEADING<> 2DUP 1 +UNDER 1-

R #WHOLES + SWAP CMOVE (move in fractional part)
SWAP DROP - (a #) #WHOLES OVER - R@ + SWAP CMOVE ()
POP #DIGITS

POR (a) DUP C@ DUP NOT NOT $30 AND - OVER C! 1+ NEXT
DROP ;

.X (a#-a’) FORDUP C{ $30 + EMIT 1+ NEXT (a) ;
X (reg =) CR #WHOLES .x PT EMIT #FRACS .x DROP ;
.DX (dreg ~) CR #DIGITS .x 44 EMIT .X ;

" e

-—

scale number left or right - this can only be done to or
from a double precision accumulator)

REG! (regl reg2 -) #DIGITS CMOVE ;

DREG! (reg dbl-reg -) DUP DZERO REG} ;

DREGE (dbl-reg reg -) REG! ;

NORMALIZE+ (reg -) #DIGITS-1 + 0 (ie initial-carry)
#DIGITS POR (a cy)

OVER C¢ + (a wcy) 10 U/MOD (a new-v new-cy)

PUSH OVER C! 1- POP NEXT (ABORT" overflow! ") 2DROP ;

NORMALISE- (reg -) #DIGITS-1 + 0 (ie initial-carry)
#DIGITS FOR (a cy)

OVER Cq§ + (a wicy) 245 OVER U< DUP PUSH 10 AND +

{ & new-v)

OVER C! 1- POP NEXT (ABORT" underflow! ") 2DROP ;

3 RIPPLE+ (reg n pos ~) FOR OVER I + DUP PUSH C§ +
DUP 9 > WHILE 10 - POP C! 1 NEXT ELSE POP C! POP
THEN 2DROP ;

¢t RIPPLE* (reg n pos -)
FOR OVER I + DUP PUSH C§ OVER * POP C! NEXT DROP (reqg)
NORMALIZE+ ;

t (SCOMPLEMENT (reg # -)

PORDUP I + 9 OVER Cl - SWAP C! NEXT DROP ;
t 9COMP (reg =) #DIGITS (9COMPLEMENT ;

t DSCOMP (dreg -) D#DIGITS (SCOMPLEMENT ;

+ XNEGATE (reg -) DUP 9COMP 1 #DIGITS RIPPLE+ ;

1 ADD (reg reg -) #DIGITS FPOR OVER I + C§ OVER I + DUP PUSH
Ce + POP C! NEXT NORMALIZE+ DROP ;

S8UB (ab=)(ah-=>a) SWAP (b a)

#DIGITS POR OVER I + Cl (bv) OVER I +

t XCOMP (regl reg2 - =1|0|+1) #DIGITS COMP ;

N: U NtV Nt W Nt X Nt Y N: & (make some "registers”)

DUP PUSH Cé (bv av) SWAP - POP C! NEXT NORMALIZE- DROP ;

X< (regl reg2 - £) XCOMP =1 =
X (regl reg2 - £) XCOMP 1 =
X= (regl reg2 = £) XCOMP O=
X0< (regl - £) Ce 4 SWAP U< ;

w o o e
. we e

LEFT-JUST (regl # - #places-shifted) PUSH 1+ DUP POP
1- 0 -LEADING= (a+l a+3d 5) PUSH

(at+l a+3) 2DUP (a+l a+3 a+l a+3)

SWAP Ré (a+l a+3 a+3 a+l 5) CMOVE { a+l a+3) OVER -
(a+l #) POP +UNDER (a+l+5 #) DUP PUSH 0 PILL POP ;

8->R (n reg -) SWAP (reg n)
<# #FRACS FOR '0 HOLD NEXT PT HOLD # #8 DROP DUP PAD C!
PAD 1+ SWAP FOR SWAP OVER C! 1+ NEXT DROP PAD SWAP X! ;

DREG/10 (dreg -)
DUP DUP 1+ D#DIGITS-1 CMOVE> (dreg) 0 SWAP Ci ;

MUL-STEP (reg dreg -)

(reg dreg) DUP #DIGITS + C¢ (ie multiplier) ?DUP IF
#DIGITS FOR PUSH OVER CE R¢ * OVER C8 + OVER C!

~1 +UNDER 1- POP NEXT SWAP 1+ NORMALIZE+ THEN 2DROP

t MUI+ (regl reg2 dreg -) (accumulating) DUP PUSH
SWAP OVER (regl dreqg reg2 dreg)
#DIGITS DUP +UNDER CMOVE (regl dregq)
#DIGITS-1 +UNDER #DIGITS-1 + (reg dreg)
#DIGITS FOR 2DUP MUL-STEP POP R€ DREG/10 PUSH NEXT
2DROP POP
#FRACS FOR (dreg) DUP DREG/10 NEXT DROP ;

: MUL (regl reg2 dreg -) (non-accumulating)
DUP DSERO MUL+ ;

N: DIVISOR N: TEMP1
DN: DIVIDEND DN: DTEMP DN: QUOTIENT

t x10* (a # =)

(shift left 1 place; force sign-digit to sero)
2DUP OVER DUP 1 +UNDER ROT CMOVE (a # a)

+ 0 SWAP C! DROP
REG10* (reg -) DUP #DIGITS-1 x10* 0 SWAP C! ;

t DREG10* (dreg ~-) DUP D#DIGITS-1 x10* O SWAP C! ;
SDREG10* (dreg -) D#DIGITS-1 x10* ;

-
-

3 .REGS (-) DIVIDEND .DX .* by " DIVISOR .X
." —> " QUOTIENT .DX ?5CROLL CR ;

-~

division divide rl by r2 and put quotient into dreg)
both operands must bs non-negative)

DIV-INIT (rl r2 - #divisor-shifts #iividend-shifts)

DIVISOR REG! DIVIDEND DUP DZERO REG! ()

DIVISOR #DIGITS LEFT-JUST DIVIDEND #DIGITS LEFT-JUST

QUOTIENT DZERO ;

-

3 DIV-STEP (-) DIVISOR DTEMP REG1 DTEMP (reg)
DIVIDEND DUP 1+ C¢ SWAP C¢ 10 * + DIVISOR 1+ C@ U/

(reg tquot)
DUP QUOTIENT DUP DRBGlO0* D#DIGITS-1 + Cl! (reg tquot)
#DIGITS RIPPLE* (ie multiply divisor & trial quotient)
() DIVIDEND DIBMP SUB ()
BEGIN DIVIDEND X0< WHEILE DIVISOR DIVIDEND ADD

QUOTIENT D#DIGITS-1 + DUP C@ 1- SWAP Ci
REPEAT DIVIDEND SDREGLO* ;

s DIV (dividend divisor -) DIV-INIT (# #)
= #FRACS + 2 + (for rounding)
PFOR DIV-STEP NEXT
QUOTIENT DUP 5 D#DIGITS RIPPLE+ DREG/10 (round)

s TBST (§ § =) X X1 YX! Y XDIV.” -> " QUOTIENT .DX ;

The Computer Journal / #55

k)|

To copy one register to another use REG! (pronounced “reg
store”), e.g.
X Y REG! (copy X to Y, leaving X unchanged)

The words ZERO and DZERO zero out a register or double
register, e.g.

X ZERO
AA DZERO

Comparison is accomplished by X<, X>, X=, and X0<, e.g.

X ¥ X< returns true if X is less than Y
X Y X returns true if X is greater than Y
X Y X= returns true if X is equal to Y
X X0< returns true if X is less than zero

Printing registers is accomplished by .X and .DX, e.g.
X .X prints the contents of register X

QUOTIENT .DX prints the contents of double register
QUOTIENT P e

How To Read The Source Code

In the stack comments a dollar sign representsan address of a
string, where the first byte contains a count and the following
bytes contain the string. Pronounce $ as “string.”

FOR ... NEXT must be preceded by a <count>. In Pygmy,
the loop will be done <count> times. Within the loop, I is the
down-counting index. For example,

t TST 10 FOR I . NEXT ;
TST

will print
9876543210
Possible Enhancements

The names should be improved. The clarity of the code and
comments should be improved. Additional words are needed to
drop non-significant leading and trailing zeros when printing
registers. Furthermore, these large numbers are kept in fixed
locations. This is still very useful, but it might be more Forth-like
if they were kept on a stack.

References

I was encouraged in doing this after seeing John Wavrick’s
polynomial math package; after all, a base 10 number *is* a
polynomial, i.e. a(10*0) + b(10"1) + (10"2) + d(10"3) + ... +
2(1025), if we keep 26 digits.

What’s Next?

I titled this Part 1 in hopes there might be a Part 2 sometime.
Pethaps now that we can handle large numbers even on a little
micro we might do something useful with them. Suggestionsand
very gentle criticisms are welcome. @

|

Virtual BIOS, from page 29

" Itdidn’timprove things. In fact, it decreased performance. In
retrospect, the reason is obvious: it was not a good mapping
scheme for my system because the tracks on my Ampro do not
contain an even number of allocation blocks.

Double sided 96 TPI disks on the Ampro have 40 sectors per
track (Sk bytes/track). The allocation block for those disks is 2k.
Thus, the lastblock onalleven tracksis completed onthe nextodd
track. Normally, the ‘next’ track is actually the next track (or the
other head on the same track). This is the case, too, with the “first
half reversed” system—with thesingle exceptionof the twotracks
on opposite sides of the half-way point. Not too much time is
spent getting to an adjacent track.

With the “evenin—odd out” scheme, the “next” track ison the
other “side” of the disk—and gets furtheraway as the disk fills. To
make things worse, after the “split” allocation block is read or
written, atrip tothe directory is required tofind the nextallocation
block. Thus, the scheme actually causes more time to be spent
stepping the heads around the disk! The obvious solution would
be to map tracks in “pairs”—two tracks inward, two outward, et
cetera.

Each system is different in it's use of the floppies. As I
mentioned above, different schemes exist for how tracks are
numbered on two-sided disks. Different systems also use differ-
ent physical sector sizes, resulting in differing number of CP/M
128 byte sectors per track. With proper attention to a machine’s
disk system architecture, themapping scheme canbe quickly fine-
tuned for a system. Variations of the “odd in—even out” scheme

appropriate for the host machine should produce noticeable
improvement over what I've presented here.

PARTING SHOTS

What I've presented here is a NZCOM Virtual BIOS solution
that will produce a noticeable disk system performance increase
onany machine. This specific mapping scheme has worked well
for me in both sequential disk operations (system backups) and
random operations (normal use). Running time for application
programs that do a great deal of disk accesses—both sequential
and random—can be greatly reduced when their data files are on
disks with remapping enabled (try running FATCAT with the
data files on remapped disks!)

Remapping can be fine-tuned for a specific system. What I've
presented here will serve as a basis for system-specific schemes.

As a companion to this article, I've prepared a library named
SWBIO10.LBR which contains ready-to-load ZRL versions of the
virtual BIOS presented above, acompiled versionof the SWAPVEC
manipulation utility, and a utility to initialize disk directories. This
fileis likely tobe available onyourlocal Z-Node. If itisnt, youcan
get copy from my system, The Elephant’s Graveyard, at 619-270-
3184.0

Moving?

Don't Leave Us Behind!
Enter Change of Address six weeks in advance

The Computer Journal / #55

YASMEM

(Yet Another Static Memory Expansion Module)

By Paul Chidley

Before | get into the Yasmem board let me update you on the

Yasbec (Yasbec is the Yet Another Single Board Eight-bit Computer
~ discussed in TG/issues 51 and 52, “When eight bits is enough”).
The monitor ROM for the Yasbec has been finished and running
bug free for some time now. Wayne did an excellent job on the
ROM and the documentation, the ROM is well suited to running
the Z180 without any formal operating system. A non-banked
BIOS starter disk is available from Cam Cotrill (see TCJ54 title?)
and the banked version is under testing and may be ready by the
time thisisinprint.lhadalimited number of Eurocard backplanes
for the Yasbec cards and can have more made if interest warrants
it. We have a strong Yasbec topic going in the CP/M section of
GEnie, over 140 messages since July 1990, as well as the occasional
Yasbec Round Table (real time conference) night, so if you want
the most up-to-date information I suggest looking into GEnie. It
is the only place I regularly check my Email, usually every day.
Anyway on to the Yasmem.

The Yasbec CPU card supports up to 1 Megabyte of SRAM on
board, so why would anyone need a memory expansion board?
Well the Yasbec has two 32 pin sockets for RAM so two 512K x 8
SRAM chips would provide the IMB but monolithic versions of
this chip do not commercially exist yet. There are modules
available, at the time I wrote this articlea 512K x 8 SRAM module,
32 pin 600 mil dip, 100ns, commercial temperature range, cost
around $185 US in small quantities. On the other hand the 128K
x 8SRAM chips are around $22 so the 512Kx8 module is still twice
the price of four 128Kx8 chips. This means that eight 128Kx8
SRAM chips and a memory expansion board are currently a cost
effective solution until the 512Kx8 monolithic chips become a
reality. The Yasmem was designed to pmwde my pmtotype
system the full IMB of SRAM and to test running programs in
external RAM across thel / O connectorandbackplane. Witheight
32 pin dip sockets on the Eurocard there was lots of space for a
battery backup controller and two lithium batteries. Figure 1
shows the general layout of the board.

Figure 2 shows a partial schematic of the Yasmem board, the
SRAMswere left off tosave space. Thebackplane signals are fully
buffered by U9, U10, U11 and U12. U12 driving the bi-directional
databus is a 74act245 while the other three buffers canbe 74act245
or74act541. The 541 is thelogical choice foruni-directional signals
but since a 245 is required for the databus these three buffers can
optionally alsobe 74act245by changing theR1and R2 jumpers as
indicated. The buffered address and data lines go directly to the
SRAMs as required. Address lines A15-A19 and the control lines
go to the 16L8 pal U13. Using a pal gives the flexibility to change
the hardware address decoding as required depending on how
the Yasmenm is to be configured in your system. The pal does not
do absolute address decoding, instead it decodes the desired
board address down to three lines, these lines are then passed to
theDS1211 (U14) which does a 1-of-8 decode to get the individual

The Computer Journal / #55

chipselects. In otherwords, when using 128Kx8 chips the address
lines A17 through A 19 are passed straight throughbut should you
desire tomake a256K SR AM board using 32Kx8 chips only anew
pal is needed.

The Dallas Semiconductor DS$1211 is used on the Yasmem to
give us battery backup control of the SRAMs. The features listed
in the data sheet are;

Converts full CMOS SRAMs into nonvolatile memories
Unconditionally write protects when Vcc is out of tolerance
Automatically switches to battery when power fail occurs

3 to 8 decoder provides control for up to eight CMOS SRAMs
Consumes less than 100nA of battery current

tests battery condition on power-up

Provides for redundant batteries

“Powerfail” signal can be used to interrupt processor on
power failure

Optional 5% or 10% power fail detection

* Available in 20 pin dip (D$1211) or 20 pin SOIC (DS12115)

The DS1211 providesa 3 to 8 decoder to provide an active low
chip select signal to one of 8 SRAMs. Input voltage (Veci) is
monitored by comparing it to 4.75V or 45V depending on the
level of the TOL pin (tolerance GND=4.75 Vcc=4.5). If Veci drops
below the tolerance level thenwrite protectionisaccomplished by
ensuring that all chip select outputs are held high to the SRAMs’
Vee (Veoo). Veeo to the SRAM chips is switched from Veci or the
battery supply depending on which is greater. This provides
constant power to the SRAM since the switch is transparent and
with only a 0.2V drop. An internal switch also selects the battery
voltage input that is greater; should abattery fail voltage input is
transparently switched to the otherbattery. Battery voltageis also
tested on power up, if thebattery voltage is less than 2.0 volts then
the SECOND access to memory is inhibited. A simply battery test
can by done by the processor by reading a memory location,
writingadifferent value tothat memorylocationand thenreading
that memory location again. If the values read are equal then the
battery voltage is too low since the write cycle was inhibited. This
makes a great bug for people that forget about this feature and
have a dead battery. If using one battery the other input must be
grounded.

The flip flops of U15 provide an optional Wait state on opcode
fetches, something that is notsupport on the Yasbec. The Z180 has
programmable wait states so why add hardware to do it here?
Well I'm thinking of the day [install my 20MHz Z180 and 45nS
expensive SRAMs. The Yasbec can have its fast CPU and fast
SRAM running full speed withnowait statesbut the Yasmem will
add one if its slower SRAM is accessed. So someday this will
prove useful, for now I jumper mine to disabled so everything
runs at full speed. (no need to slow down to access our bus) (yet)

33

34

At] 0000000000000 0OOO0OOO0OOOOOOOOOOOO
a1 0000000000000 000O00O0O00000O0O0VO0VO

[010]
10
Z 10
™
110

™1
Qln
™y
N
=

000000000

000000000

[oXoXoXoXoXoXoXoXo)

0000000000000000

QOQQCO0Q00QQQ0QLL
—
00000000 00000

(@) QOO0 QO
=

Q000000000000 Q00
[eJoXoXoXoXoolooYo]oXoXoYoXo1n|

=

[0000000000000000
®

0000000000000 0Q00

QOOOQ Q O

Q00000Q0Q QQQOQ

D

52
2

Figure 1: YASMEM board layout

The Computer Journal / #55

samxasavs e

srteseernae

EaRReATESIBRRENEY

=g
if“.“l.."R“

YRR IR R

Chmm B e R RO e

A A A M E R E AR R R

d all other YASBEC boards may be

s an

The YASBEC motherboard. Th
mounted on the Eurocard backplane.

Photo 1

SEAEEFARE T RIS

AR EERE RN N T N R

sreherITERRNESY

board.

10mn

The YASMEM memory expans

Photo 2

AP A,

~HEHE

Fi3123 1]
[24

%
a
H
.
1
M
«
®
¥
-
=
»
13
«

ics board.

YASBEC color graph

Photo 3

35

The Computer Journal / #55

36

vce

vCC

DS1211

J1

_M1 A2

PE<TF—
WE <JF—

SRAM

SRAM

O O MNO—D
[E T T AT T -
>I Z
x X nE o .

g goctoses I |
U3 URDDOONDIURN 1 rGavd g v Pgy

o _A ain
o | yaLh
el =
™ | i = ™~

, n |

[=] MN-D U -

8 muu.lul.u n.l arje .9

S BRARRER S |, 5w pr—

= - T .

-t == SN

S3, WES

> »—3 ool >> o 8'_@

@ wm & o o) ai >

O] — =]] | ©

. 5
@ &
||t [o o
+* o« 3]
- -
xr —
s -
Holg A
| a B e) a1 hqa,a(///
O UM=MNOMN0)
DO rtvttemtrmtemtomio—t r |
$> Lbulbl 'é~mm:ru or- d;
NSNS v {MEOMEODHOMO c

- (===l = m H ~4

= 3 ol a0 PET o

& - 0 58 U1 o O

O UNMUD~O0— 2 = —_ >z O~
——se—s—s—s————— (D " l@oun=non r~ —~ 0 —> .

T] . (= = N T
Al A e [} o} on] (=) O 0oOwmn o= O
| ~— S
o oo~} 1f @ 1] () — D2
—y —q —q —4 ‘A“\ 4
5 = P i - I &
DONN==FNM
oczoacoTOT a c 0 0 ~
— @0 ™~ O X
IO PNO—D D] J C cr- o
[=l="al="ale = =] x ac c C 0
a 0O 0 0 04 3
o OO ¢ O~ 0
(7] e L]
3]
8 F—wwarAma—]
> 2y {7
ofefed e ,
L or-) m|r~
DO O~ [O— 0O O~ OO
e e St ol I ettt o I
> R - - pond e

of e oF 130! ot 13—

g 830 P— Sy 8307 pP— =] 030 P— -~
> - > - = - [e))
* [@~umzrinwr~ ™ | umrinor o~ mzrinar -

bl bl b B e B Sk Bl Ll ol ol L d § Dol Bt G Dol et el Bt g
MV [~ on)| Ll Q
S £.600.0.000 .4 3 NNEX T o«
RNARRN Lalaloalalolal ol el '-l.-l-—lv—l'—l—iuc D
5 RN VTOTOTOT ococwa
3 \J — o
MO NN WM O00 P~ ONFMN—D
OTLTLXLT wtvtvt e=tv=tvtCT (T ool seneaanons deny crl
COCCoXOMD Taacca >
| webnad e=g o=t c
|:7i oo e
[72) %2}
>
o

Figure 2: YASMEM Schematic Diagram

The Computer Journal / #55

Now that we have an external memory board we must
configure memory in our Yasbec system. Like many things there
are many ways to do this so here’s my suggestion but I'm sure
people will dream up other ways to doit. Use up to seven 128Kx8
chips on the Yasmem leaving the first 128K of physical space
empty on the Yasmem. This would provide for a maximum of
896K of battery backed up memory foraRAM disk. Onthe Yasbec
CPU the first 32K of physical memory is occupied by the monitor
ROM. Ifusing 32Kx8 chips, twowould provide the 64K of system
" RAM needed for a non-banked system. If using a single 128Kx8
SRAM 32K would be missing due to the overlap with the monitor
ROM leaving 96K free for a banked system.

I hope Yasbec users and others have found this article interest-
ing. There are a good number of Yasbec systems out there up and
running and installing their software. Enough people that a few
of them should take the time to write an article for TCJ/! Youknow,
“Yasbecfrom the Outside World”, “How [built my Yasbec”, orthe
now infamous “How I let the Smoke Out”.1'm sure inquiring TCJ
minds want to know.

As before, contact me by voice, GEmail, postal snail, et cetera,
if you are interested in the Yasmem and/or Yasbec boards. I'm
always available to answer questions but I am on Calgary (MST)
time so give me a chance to get home from work before you call
andbe wamned, if you wake me up it willbea very short answer. @

Paul Chidley

162 Hunterhorn Dr. N.E.
Calgary, Alberta

Canada T2K6H5
Voice (403) 274-8891 MST
GEmail PCHIDLEY

Cam Cotrill

1935 Manhattan Ave.

La Crescenta, CA 91214

Voice (eves/wkends) (818) 248-0553

D 1 SY
d1 @ 0000000000000 OOOOOOOOOOLCOOOOOOOO qz2
Al O0000000C000000O00000OO0OO0LCOOOOO0OLOO @ A32
qt @ oJoJoloJoJoJoXoloJoloXoXoJoJoXoJolohololololofoloRoNoLo N0 R0X0R0) dz2
Al 0000000000000 00O000O00OOOOOOOOO0O0O0 @ A32
a? @ oJololelel0l0L0X0101010]10101010L00L01CL0NCLOL00R0XON0NOLOLGRE. d32
Al COO0Q0Q0000000O0000O00O0O00OO0OOOOOOD0 @ A32

J4
q1 @ CO0Q0QQO00OO0LCCOCOO0OOOOOOLOLOLLCOOLLO dz2
Al 00000000 CO00OQLO00OCOOO0O0OLOOOO0OO00O0 @ A3Z
U
= 4

S D

Figure 3: EuroCard backplane
The Computer Journal / #55 37

T J The Computer Jounal M arket Place

Discover
" The Z-Letter

The Z-Letter Is the only monthly
publication for CP/M and Z-System.

{1|Eagle computer and SpeliBinder

support. Licensed CP/M distributor.

Subscriptions: $15 US, $18 Canada
and Mexico, $45 Overseas

Write or call for free sample.

The Z-Letter
Lambda Software Publishing
720 South Second Street
San Jose CA 95112-5820
(408) 293-5176

Advent Kaypro Upgrades

TurboROM. Allows flexible configura-
tion of your entire system, read/write
additional formats and more. $35

Hard drive conversion kit. Includes
interface, controller, TurboROM, soft-
ware and manuval—Everything needed
to install a hard drive except the cable
and drive! $175 without clock, $200
with clock.

Personality Decoder Board. Run more
than two drives, use quad density
drives when used with TerboROM. $25

Limited Stock — Subject to prior sale
Call 916-483-0312 eves weehends or

write Chuck Stafford. 4000 Norris
\venoe, Sacramento CA Y5821

TC] The Computer Journal Market place
Advertising for Small Business

Looking for a way to get your message across?
Advertise in the Market Place!

First Insertion: $50
Reinsertions: $35
Rates include typesetting. Payment must accom-
pany order. Visa, MasterCard, Discover, Diner's
Club, Carte Blanche, JCB, EuroCard accepted.
Checks, money orders must be in US funds
drawn on a US bank. Resatting of ad constitutes a
new advertisement at first insertion rate. Inquire
for rates for larger ads if required. Deadline is
eight weeks prior to publication date. Mail to:

The Computer Joumal
Market Place
PO Box 12
S. Plainfield NJ 07080-0012 USA

Kenmore
ZTime-1
Real Time Clocks

 CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
plus $3.00 shipping and handling. Also, MS/PC-DOS Software.
Disk Copying, including AMSTRAD. Send self addressed,

Assembled and Tested with
90 Day Warranty
Includes Software

$79.95

stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

Send check or money order to
Chris McEwen
PO Box 12
South Plainfield, NJ 07080
(allow 4-8 weeks for delivery)

Z-System Software Update Service

Eg Provides Z-System public domain software by mail. g 5
5 _g Regular Subscription Service 22
E& o Z3COM Package of over 1.5 MB of COM files ™ §
3o g Z3HELP Package with over 1.3 MB of online documentation 3@
£2 ¥ Z-SUS Programmers Pack, 8 disks full °Ni
< 5 5 Z-SUS Word Processing Toolkit) § >
TS0 And More! g g 3
B8 £ For catalog on disk, send $2.00 ($4.00 outside North America) By
g 3 and your computer format to: %

;ﬁ Sage Microsystems East 3

1435 Centre Street

Newton Centre MA 02159-2469

38 The Computer Journal / #55

ZBest Software

By Bill Tishey

ZSUS News

Z3LBR Package: This package was completed last Octoberand
is the third in a series of “toolkits” which I have planned to
organize the many Z utilities according to function. The first was
Z3PROG (The Programmer’s Toolkit) and the second was
Z3WORD (The Z-System Text/Word Processing Toolkit). These
packages are not just a dump of every utility available, but a
careful selection (with advice from others) of the “latest and
greatest” of tools in each category, including not only Z utilities,
but (still essential!) CP/M programs. How do I decide what to
include? Well, I have a few simple guidelines. Programs are
generally not included if their functions are felt to be duplicated
or improved upon in more recent or “modernized” tools. Tools
with the same function are included if one is felt to have some
unique, valuable feature. Some programs which perform the
same function, however, are worth in-

UNZIP15 because of its unique ability to extract from SFX (self-
extracting) ZIP files. And, while ZLT15 is the preferred library
“typer”, LT30 (now LT31) is also included for its ability to extract
afile to a specified DU. VLU108 is included even though many
complainofits limitations and, in particular, problems in preserv-
ing datestamps. The development of VLU was never fully
completed and, depending on one’s system, it may or may not
work reliably as a LBR shell. Still, there are those who like its
ZFILER-like interface and other features (for example, its handy
way of making CRUNCH comments). Forbuilding LBRs, LPUT
is a more reliable tool, is lightning fast, versatile and command-
line oriented. LPUT and LBREXT, used either from the command
line or in a combination of ZFILER macros and ARUNZ scripts,
are probably the safest Z-System tools to use in building and
dissolving LBR files. Some programs not included in the package
are: ZLDIR, EXL12, TYPELZ22, LRUNZ302, LCRC, and

cluding simply because they are styled a Figure 1
bitdifferently (it's gpod sometimes to have Group #1
alternatives). Let’s look at Z3LBR.

Z3LBR contains Z-System and general CL10 .LBR
CP/M programs useful in library and LBREXT34.LBR
archiveoperations. Itconsistsof threegen- mmm:o:ﬂ

- eral groupings: LFIND . LBR*
* LBR-member handling utilities (di- LFINDPAT.LBR
rectory listers, file finders, typers, ﬁi’ LI‘::
extractors, etc.) LLP12PAT.LER
+ utilitiesforhandling ARC, ARK, ZIP, LPUT22 .LBR
and ZOO files 2;1:1;‘““ L;:':
* major library shells and miscella- SLT1S .LER
neous programs.

Group #2 Group #3

25k ARC-FILE.IZF* 5k LuU310 .LBR* 47k
37k ARC20 <ARK 69k LUSH12 .LBR 24k
45k ARC20COM.LBR* 24k LUDEF .DOC* 8k
25k ARK11 .ARK 16k LX22 .LBR 48k
6k BOOZ4CPM.ARK* 34k NULU152A.LBR* 55k
2k UNARCZ13.IBR 86k VLU108 .LBR 46k
S5k UNZIP099.LBR* 16k ZLUX27 .LBR 74k
10k UNZIP15 .LBR 23k

2k ZIP-APP .LBR* 7k

35k ZIPDIR12.LBR 21k

9k

S6k

3%k

See Figure 1 for a list of the programs
selected. Those with an asterisk are general CP/M programs.

Comments: This package contains plenty of tools and docu-
mentation foranyone interested in library / archive management.
You'llnote that LLF isincluded along with LDIRB. This isbecause,
as we noted in TGJ 51, LLF has the added ability to report
member-file CRCsand member-fileindices (bothLDIRBand LLF,
however, have been outdone by a new tool, LD—see the review
below). Among unZIPpers, UNZIP099 is included along with

UNARCI16. These were felt to be superseded by, respectively,
LDIRB, LBREXT34, ZLT15, LX22, LREPAIR, and UNARCZ13.

Other “toolkits” which I hope to make available in the future
are ones dedicated to “file”, “system”, “disk/directory”, and
“date/time” management. If readers have other ideas, I'd be
happy to hear them.

Z3COM Package Update: The ZSUS set of program executables
(.COM files) was updated in November to include the latest

versions of ZCPR3 and Z-System pro-

Bill Tishey has been a ZCPR user since 1985 when he found the right combination of
ZCPR2 and Microsoft s Softcard CP/M for his three-year-old Apple 11+. After graduating
toZCPR30and PCPI's Applicard CP/M, hedida “manual install " of ZCPR3.3 (with help
fromalot of friends!), and in late 1988 switched to NZCOM and ZSDOS, all on the same
vintage Apple I+, Bill is the author of the Z3HELP system, a monthly-updated system of
help files for Z-System programs, as well as comprehensive listings of available Z-System

software and is the editor of the Z-System Software Update Service.

Bill may be contacted on CompuServe (76320,22), GEnie (WATISHE), on Jay Sage's

grams. This package now contains 641
files, totaling 2,696k and is bundled on 10
5.25 DSDD disks for $50. Configuration
files (.CFG), if available, are included in a
separate CONFIGLBR for convenient
usage with Al Hawley’s new ZCNFG tool
which recognizes .CFG files from within
LBRs. The packagealsocontains vital CP/

Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Severn MD 21144

The Computer Journal / #55

39

M programs such as CRUNCH, UNCR,
and NULU.

Z3HELP System Update: | wenton a
blitz during the first part of November to
update the Z3HELP system and by mid-
month managed to bring it current with

releases. Of course, I'm now sev-
eral months behind again, but | always
look forward to examining the new cre-
ations. Over 100 files were modified and
an additional 500k was added to the last
release (04/18/91) of the system. Theonly
new format change is the use of the “y”
LBR now for help forall the Libraries and
related programming modules and rou-
tines. Userscanupdatetheircurrentsetups
by picking up the update LBRs

Figure #2
B(Edit ICM) R(Recalculate £CM) W(Write File) ESC/Q/X Quit ?

CBIOS CBIOS (FP106) 30 Records QFOOK

User Memory Area UMA EC00 (10)Records 0500h
External Stack EXTSTK (EBDO) 0030h
Multiple Comand Line 33CL (EBOO) (203)Bytes 00DOh
Wheel Byte £ 3WHL (EAFT) 0001h
External Path EXPATH (BAP4) (S)elements 000Bh
External FCB EXTFCB (BADO) 0024h
Message Buffar 23M8G (EA80) 0050h
Shell Stack SHSTK (EAOO) (4) (32)Byte Entries 0080h
Environment Descriptor Z3ENV (BE900) (2)Records 0100h
Named Directory 23INDIR (BE800) (14)Names 0100h
Flow Control Package FCP (B600) (4)Records 0200h
Resident Cammand Pxg RCP (DBOO) (16)Records 0800h
NZCOM BIOS BIO (DD00) (2)Records 0100h
Disk Operating System DOS CPO0 (28)Records OEOOh
Command Processor CCP C700 (16)Records 0800h
Input/Output Package IOP (0000) { O)Records 0000h

Effective TPA: 49.50k

(Z3HELP43, 43b, 43, 43d) on various Z-

Nodes. Sincethese are over 400k, however,

you might find it easier to acquire the

entire system anew. Z3HELP sells for $30 (6 disks, now totaling
1,700k). Current ZSUS subscribers and Z-Node SYSOPs get it for
half the price ($15). For those not interested in source code, who
want the complete complement of Z-System software, I think that
the combination of the Z3COM package and the Z3HELP pack-
age (for on-line documentation), is an excellent alternative to
downloading or purchasing the many individual Z-System dis-
tribution LBRs.

The Value of User input

The team of Z-System developers works hard to refine and
enhance the Z utilities we use. A lot of thought is given to any
changes suggested for a program and much care is taken when
anyimprovements are implemented. Upgrades are released usu-
ally after consultation with other authors and after much testing
for the problems which can surface when programs are modified.

The developers, however, can’t uncover every bug and can't
foresee everysituation in whicha program willbe used. Theyalso
mustrelyonusers’ input. Hereis what Jay Sage had tosay recently
to one programmer who seemed somewhat discouraged overan
undetected problem:

“Actually, I think the reason why no one else had reported the
problem before is low expectations, but not with respect to you,
butwithrespecttothemselves. Many users, when they experience
a problem, seem to assume that it is their fault. They think that we
programmers are too good to make mistakes! [have found some
pretty serious bugs in some of my own programs that could not
possibly have gone unnoticed by the entire user community.
What those users don't realize, I think, is how helpful they could
be by pointing out not only full-fledged bugs but also features
they don't like.”

Enough said? The Z team values your comments and sugges-
tions. They take pride in their work and like to know that their

programs are meeting your and their ex-

Figure #3
BOsNODEM>FL //

FL Version 1.0
Usage:
FL {{dir:}{afn) {...}} (~afn} {/options)
Matches files that don’t match negative (~) filespec.
DIR specs after the first are ignored.
Options:
0 omit output to file FILELIST
D include DU’s in FILELIST
§ include system files
P don’t page display
Q quiet mode

BO:MODEM>f] d15:*,1lbr

PFile list from D1S:

<arav
FEEEE
cumwa
REEEE
Wepra

.1br | z3helpdd.
27 matching files found on D15:

FEEFE

BO:MODEM>L]1 d153*,* ~*,lbr

PFile list from D15:
-read .me
filelist. | hdr | nar2

. | mast .cat
9 matching files found on D15:

REETE

| -z3help .doc | -z3help .lst | -z3help .new | -33hlpdd.doc

pectations!
New Releases and Updates

Since I missed the last issue (I apolo-
gize for that), I have four months to make
up in discussing Z-System program de-
velopment! Listings 1 and 2 1 think prove
that there were warm fingers on at least
some keyboards this winter. Thanks go to
the editor for giving me the space this
issue to bring you up to date.

Terry Hazen: EDZCM10, ENVCFG12,
JTHLIB12,DATEFN11,DD19,ENVSRC12,
NZTIM12, PRNTXT16, REMIND15,

° +1bx RENAMZ19

3, ﬁ: Terry is famous for his fine line of
t «1br system utilities which operate in both
Y -lbr ZCPR3and CP/Menvironments (ACOPY,

RENAMZ,ERAZ,UNERAZ,DD).Hehas
alsoreleased some interesting tools which
help tosimplify making changes to the Z-
System environment. (Note his article on
IOPLDR in TGJ53).

EDZCM10 (ZSUS V3 #2) is a screen-
oriented editor for NZCOM “.ZCM”

The Computer Journal / #55

Figure #4
BO:MODEM>1d //

ID Version 1.1

copy of the current environment into
ENVCFG.COM's buffers, allows config-
uring of the contents of those bulffers,
saves the modified environment to

Usage: memory, then clears the contents of the
ge 3/
LD {dir:}lbrname {afn} {{/}options} bufferinENVCFG.COM. Thenew Z3ENV
mé""';i. Lav embedded comments can alsobe saved toa specified file (ENV
X lltzrnZto display: CRC’s and indexes is the default ﬁletype).
§ show summary only Two related tools which Terry devel-
D prefer embedded date stamp oped some time ago are ENVSRC, which
P don’t page screen .
@ quiet mode creates a commented source code file
M put matching and free entries in registers 18-21 (Z3ENV.Z80) from the Z3 environment,
L echo tt; printer and TCSRC, which creates a source code
P send final form feed . .
option X overrides embedded comment display. gi:gxmgxgg%f?hr::og; ‘::ct;dr?::la:
BO:MODEM>1d £03:1d11 put from both of these programs can be
3 used as a reference for patching or canbe
Library: FO:ID11 .LBR Created: 10/25/91 21:13 Modifieds 10/25/91 21:14 dited themsel bled and loaded
Meaber Name Size Mth Created Modified Real Nane edited themselves, assembled and loade
— to install changes to the environment.
ID11 .C2G 29r 3.62k CR 10;20;91 17:40 10;20;91 17:40 >1D11.CFG Terry has also released his set of cus-
11 .C3M 30r 3.75k CR 10/25/91 21:10 10/25/91 21110 >LD11.COM . .
1p11 .DZC 48r 6.00k CR 10/08/91 0:17 10/25/91 20:37 >LD11.DOC tom routines (JTI:[LIBIZ), originally
D11 .FOR 4r 0.50k — 10/08/91 0:17 10/24/91 22153 developed for use in REMIND and ZF,
1b11 .220 151r 18.87k CR 08/20/91 2:53 10/25/91 21:10 >LD11.Z80 which are modified versions of various
LOCF . TZT 22r 2.75k CR 10/07/91 2:29 10/20/91 17:18 >LDCF.TXT SYSLIB, ZSLIB and VLIB routines. Vers
IDCF .220 S52r 6.50k CR 10/07/91 2:21 10/20/91 17:40 >LDCF.Z80 12 fixes a bug in the FNAMZ filename
scanner and adds extended versions of
1D11 .LBR members: 7 matched, 7 active, 4 free, 0 deleted, 11 total VLIB routines GXYMSG, VPRINT and
VPSTR.
BO:MODEM>1d £0:1d1l / .
; : x Terry’s other updates include:

Library: F0:1D11 .LBR Created: 10/25/91 21:13 Modifieds 10/25/91 21:14 * DATEFN11—fixes a hi-bit filtering

Member Name Size CRC Index | Member Name Size CRC Index problem withthe help filenameand adds
ID11 .C3G 29r 3.62k ECB2 3 | ID11 .CZzM 30r 3.75k 580F 32 JTHLIB filename display calls.

ID11 .DZC 48r 6.00k 926F 62 | LD11 .POR 4r 0.50k EE29 110 * REMIND15—the “upcoming

LD11 .220 151r 18.87k 3F94 114 | LDCF «TZT 22r 2.75k DOSBE 265 month” display now highlights the cur-

Iocr .20 52r 6.50k add i — rent date and offers three options:

C—display current month’s upcoming

1011 .LBR members: 7 matched, 7 active, 4 free, 0 deleted, 11 total reminders, A— display all upcoming

, remindersand N—noupcomingremind-

descriptor files. More flexible than MKZCM, it allows users with ers.

unique systems to configure non-standard gaps between system
elements or even to place elements in above-CBIOS locations. Its
syntax is: “EDZCM [[dir:]zcmfile[.ZCM]]” whichallows loading
of the descriptor either from a ZCM file or directly from the
Z3ENV. See Figure 2 for a typical screen display.

The display is sorted by system element address, the highest
address first, and editable addresses and sizes are displayed in
standout video (illustrated here in parentheses). The effective
system TPA is displayed at the bottom. In edit mode, you edit the
address fields in hex and the size fields in decimal. You can
position system elements wherever you wish, even above the
CBIOS, and insert ‘dummy’ elements to effect a desired order. On
exit from edit mode, EDZCM will resort and redisplay the
elements in edited address order. The ‘Recalculation’ command
can be used to recalculate the element addresses beginning with
the CBIOS and working down (so you don’t have to use a
calculator!). When you're satisfied with the order, addresses and
sizes, you can write the new system out to a ZCM file.
EDZCM10.LBR includes a sample AMPRO.ZCM file for Ampro
users in which the wheel byte and path have been relocated from
page 0 to addresses above the CBIOS.

ENVCFGI12 (ZSUS V3 #2) is another new program which
providesaway of configuring the contents of the Z3 environment
through use of ZCNFG. Typical usage from an alias script is:
“ENVCFG L; ZCNFG ENVCFG; ENVCFG $; GO 1”. Thisloads a

The Computer Journal / #55

RENAMZ19—several new options include the ability to
add or delete filename prefixes.
DD19—now displays the statusline on userabort as well as
at normal exit; adds a printer init string.
PRNTXT16 (ZSUS V3 #2)—now ZCNFG configurable and
includes a printer status check.
Gene Pizzettax CONCAT16, CRCBLD14, D21, DATSTP19,
ECHO14, ERASES7, FA16A, FILT81, FL10, JUST13, LCS10, LD11,
PRETTY31, RCOPY21, SWZ10, UMAP18, XFOR15, ZSLIB34,
ZTIME14

Remember the excitement over XFOR, which we covered in
depth in TGJ49? Well, Gene has developed another utility based
on collaboration similar to that with XFOR. While Gene was
working on CPD, his “Compare Directory” utility, he noted that
there was no comprehensive set of routines for reading and
generating lists of disk files. None of the current directory listers,
for example, can output a single-column list of files. It became
evident that some generalized routines were needed for handling
file lists from within programs as well as a separate directory
utility that specialized in creating disk-based file lists. Well, Gene
has come up with both!

Gene describes his approach to reading disk-based file lists
thus: “Filelist processing isaccomplished asastream, withtheend
of afilename assumed when the read routine reachesa commaor
a non-printable character. This is not only efficient, but allows

41

using lists produced by thelikes of dBASE
and BASIC. Multiple non-printable char-
actersaresimplyskipped over. Thisallows
certain control characters to be used as
markers in the list, either to tag particular
files or to mark blocks of files.”

Gene makes use of the new routines in
RCOPY21, CPD15,and the new FL10,and
other programmers are now considering

" their use. Rob Friefeld’s new version of
ZFILER (ZF10Q) writes out tagged files to
disk so that the tagging can be preserved
across macro invocations. Gene’s routines
raise the possibility of tagging files based
on datestamps, etc., without having to
add considerably to ZF’s code. Rob’s XOX
utility presently uses a complex internal
file list generator and might also benefit
from this being handled externally to the
program. Gene is also thinking of modify-
ing W.COM to read file lists for programs
that don’totherwise handle them. He sug-
geststhatversionsof CRUNCHand UNCR
which handle lists might also be handy.

Now let’s look at Gene’s FILELIST
(ZSUS V3 #3), a ZCPR3 utility which cre-
ates filelists on disk for use by other
programs. See Figure3 for FL'susage screen
and some sample displays.

FL allows multiple ambiguous file
specs, incuding a negative specification
(filespecs preceded by a tilde). The error
flag is set if no matching files are found.
Matching filenames are written to a disk
file, in uppercase, one name per line in
standard command line format
(“filename.typ”). Optionally, the DU in

.which the file is located can be included
with the filename. As is customary with
Gene’s utilities, a number of configura-
tion options are available using ZCNFG:
display of filenames in upper- or lower-
case; output of FILELIST to either the
currently logged or target directory; giv-
ing FILELIST a different name; setting the
error flag and invoking the error handler
onabort (to allow aborting a ZEX or SUB
batch operation).

Like XFOR, FL offers a lot of possibili-
ties for enhancement and weshould seea
number of future upgrades. Some sophis-
ticated negative filespecs mightbe possible,
for example, as well as an ability to select
files by attributes or combinations of at-
tributes.

Anotherof Gene’saccomplishmentsis
LD (ZSUS V3 #2), his new Library Direc-
tory tool. LD is based on LDIR-B, but is
intended to be much more versatile, with
numerous command line and configura-
tion options, and making more extensive
use of Z-System facilities, while remain-
ing compatible with vanilla CP/M and

CPG=N

CRCBUILD.COM 1.40 0 0

EDZCM.COM 1.00 3 vao2

CFG=Y or from the Z3ENV.

ENVCFG.COM 1.20 3 V302

FILEATTR.COM 1.6a
FILE

4 V303

FL.COM 1.00 3 v303

HELPCH.COM
HELP

1.00 3 V303 6

CFG=Y standalone files.

IOPLDR.REL 1.10 30 2

CFG=Y a user-written custom loader.

JTHLIB.REL 1.20 0 0 2
PROG3
HLP=N
CFG=N VPSTR.

@

1Cs.coM 1.00 00

HLP=R
CFG=Y Courier font.

LD.COM 1.10 0 V303
HLP=Y
CFG=Y names.
LHH.COM

HELP

1.00 3 v303

HLP=N
_CPG=Y files in libraries.
SWZ .COM 1.00 30
DATE

HLP=Y
CFG=Y

Listing #1 New Releases:
name vers sys/sus kb rec crc library/size issued author
C128.23T 1.00 30 1 1 487B C128TCAP 2 12/05/91 Ed Flinn

8YS Extended TCAP for the C-128, implementing many of the extended
HLP=N functions, including simple ASCII charactersfor the graphics.

3 18 04D5 CRCBLD14 20 10/03/91 Gene Pizzetta
sYS %2’ified version of SIG/M's CRCBUILD. Recognizes DU/DIR specs, takes
HILPsN the disk number automatically from the disk label (if one exists),
CPG=Y sats the error flag, and is compatible with CRCZ’s CRC-checking.

7 54 5F84 EDZCM10
8YS Screen-oriented editor for the N2COM ZCM system descriptor file.
HLP=Y Displays and can edit NZCOM system elements and sizes from a ZCM file

2 13 710C ENVCFG12 21 11/21/91 Terry Hazen

sYS Used with ZCNFG and ENVCFG.CFG to configqure the current contents of
HLP=Y the ZCPR3 enviromment (valid drive vector, max drive, etc.).
CFGsY the I3ENV contents and writes them back after modifications.

4 32 BASC FAl6A
Displays or sets the attributes of selected groups of files under
HLP=Y CP/M or any of its replacemsnts.
CFG=Y Originally distributed with ZDOS vs 1.1.

4 31 C5DD FL10O
FILE PL creates file lists on disk for use by other programs. Multiple
HLP=Y ambiguous file specs, including a negative spec, may be given.
CPG=Y Matching file names are written to a disk file.

42 D5D7 HELPLZH
Z-System Help tool which works with LZH-encoded help files (.HYP)
HLP=N instead of crunched (.HZP) or squeezed (.HQP) files.

9 6656 IOPLDR11 14 06/07/91 Terry Hazen
I0P Ganeralized IOP loader REL module that may be linked to load and
HLP=Y remove a target custom NZCOM IOP module.

9 5C6F JTHLIB12 13 01/27/92 Terry Hazen
Custom routines originally developed for use in REMIND and ZP.
Includes extended versions of VLIB routines GXYMSG, VPRINT, and

11 86 3941 1CS10
SYS Loads character sets to Wyse 60 and Televideo 965 terminals, including
a Roman font similar to that on MS-DOS machines and an easier-to-read
Provides also for a user-defined font.

4 32 D55E 1Dl11
LBR LBR directory utility that shows member files along with their create
and modify dates and times, compression method and uncompressed file
Displays embedded comments and has optional printer output.

7 49 8863 HELPLIH
Z-System Help tool which works with LZH-encoded help files (.HYP)
instead of crunched (.HZP) or squeezed (.HQP) files.

3 21 D4Ad SWIl0
Replacement for SWX and SWIIME for SB180s running 2SDOS. Reads the
Smartwatch chip and sets the system "heartbeat” clock via ZSDOS.
Works under both Micromint BIOS and XBIOS.

36 11/08/91 Terry Hazen

Buffers

38 01/18/92 Gene Pizzetta
Contigurable with ZCNFG.

24 01/19/92 Gene Pizzetta

48 01/21/92 Howard Goldstein

Handles

Designed to be called by

20 10/03/91 Gene Pizzetta

45 10/25/91 Gene Pizzetta

48 01/21/92 Howard Goldstein

Handles help

19 11/15/91 Gene Pizzetta

Z3PLUS. See Figure 4 for LD's help screen
and several sample displays.

LD’s many optionsset itapart from other
LBR directory listers: embedded comments
can be displayed on a separate line (up to 76
characters); an alternate display provides

membernames, sizes, CRC's,and indexesin

two-column format; the number of match-

ing members and free library directory
entries can be stored in message registers;
and printer output and wheel protection
are supported. All this and more in less
than 4k.
Gene's other updates include:

*+ CONCATI6 (ZSUS V3 #2)—Many

changes have been made since vs

The Computer Journal / #55

Listing #2 Revised Programs:

name vers sys/sus kb rec crc library/size issued author

BCINST.COM 3.0b 00 5 39 F23C BCOMP30B 31 01/27/92 Rob Friefeld
FILE Screen-oriented, control-key installation program for BCOMP.
HLP=Y
CFG=N

BCOMP . COM 3.0b 00 9 71 4C45 BCOMP30B 31 01/27/92 Rob Friefeld

BCOMP . 40M 3.0b 40 12 90 35B6 BCOMP30B 31 01/27/92 Rob Priefeld
FILE Compares two binary files visually. Can compare selected sections
HLP=Y of a file, or a file and memory. Recuires ZCPR3.0+ or Z3PLUS,
CPG=N 79X24 CRT with EREOL, CLS, GOTOXY.

CMAZE.COM 2.40 00 29 229 7DA2 CMAZE24 38 09/24/91 Lee Bradley
GAME MBASIC/BASCOM game which uses Z-System TCAP data. Creates a maze of
HLP=N walls and asks you to position a ball in the maze. Data entry is
CFG=N best done with ZEX scripts. Uses Z3BAS library of routines.

CONCAT.COM 1.60 0 V302 7 56 C5BD CONCAT16 53 11/12/91 Gene Pizzetta
WP Concatenates two or more source files into a destination file,
HLP=Y esimilar to PIP, or appends them to an existing file. Accepts both
CFG=Y DIR and DU speca. Checks for adequate disk space. For ZCPR3 only.

CPD.COM 1.50 0 V303 4 32 F156 CPD15 32 01/19/92 Gene Pizzetta
DIR Compares two dirs and indicates which files exist in both dirs and
HLP=Y which exist only in the firat dir. Allows setting of archive bit on
CFG=Y those files which exist in both dirs. Upper- or lower-case display.

D.COM 2.10 30 4 32 BAS? D21 40 11/18/91 Gene Pizzetta
DIR Directory utility providing: display in lowercase, total disk
HLP=Y capacity, total bytes used by a file, remaining bytes on disk, etc.
CFG=Y Configurable with ZCNFG. Original (1984) by Hank Blake.

DATEFN.COM 1.10 00 2 15 4334 DATEFN1l 16 01/19/92 Terry Hazen
DATE ZCPR3/ZSDOS utility which reads the ZSDOS clock and creates or
HLP=Y optionally deletes an empty label file with the correct date as the
CFG=Y filename. Filename date format configurable with ZCNFG.

DATSTP-P.COM 1.90 0O
DATSTP~P.30M 1.90 3
DATSTP-P.40M 1.90 4
DATE See DATSTP-U.
HLP=Y
CFG=Y

0 5 35 C417 DATSTP19 64 12/16/91 Gene Pizzetta
0 "5 35 RA97E DATSTP1l9 64 12/16/91 Gene Pizzetta
0 6 42 607A DATSTP19 64 12/16/91 Gene Pizzetta
COM. For Z3PLUS only.

DATSTP-U.COM 1.90 0 6 41 4C1B DATSTP19 64 12/16/91 Gene Pizzetta
DATSTP-U.30M 1.90 0 6 41 8B9A DATSTP19 64 12/16/91 Gene Pizzetta
DATSTP-U.40M 1.50 0 € 48 48EC DATSTP19 64 12/16/91 Gene Pizzetta
DATE Displays or changes the create and modify date stamps on any file
HLP=Y from the command line. Universal version (2SDOS/ZDDOS/ZRDOS with

CFG=Y DateStamper; under Z3PLUS will display but not change date stamps).

& O

DATSTP~Z.COM 1.90 30 4 27 5461 DATSTP19 64 12/16/91 Gene Pizzetta
DATSTP-2.30M 1.90 3 0 4 27 206A DATSTP19 €4 12/16/91 Gene Pizzetta
DATSTP-Z.40M 1.90 40 4 32 B6YE DATSTP19 64 12/16/91 Gene Pizzetta

DATE See DATSTP-U.COM. For 2SDOS and ZDDOS only.

HLP=Y

CFG=Y

DD.COM 1.90 30 4 30 1941 DD19 35 12/31/91 Terry Hazen
DIR Disk directory utility which can display files selected by file
HLP=Y attribute as well as by file masak.

CFG=Y

ECHO.COM 1.40 (V1] 1 8 8A06 ECHOl4 18 10/10/91 Gene Pizzetta
ECHO. 30M 1.40 30 1 8 6CS5F ECHOl4 18 10/10/91 Gene Pizzetta
ECHO. 40M 1.40 40 2 12 BF64 ECHOl4 18 10/10/91 Gene Pizzetta
SYS Allows text entered at command line to be typed to the screen
HLP=Y without the operating system acting on it.
CFG=Y

ENVSRC.COM 1.20 4 0 6 41 1FFF ENVSRC12 13 11/15/91 Terry Hazen
PROG2 Creates commented source code from a Z3 environment using the latest
HLP=Y extended environment definitions in NZCOM.ZCM.

CFG=N
ERASE.COM 5.70 3 4 26 F876 ERASE57 36 11/14/51 Gene Pizzetta
ERASE. 30M 5.70 3 4 26 1EBl1 ERASE5?7 36 11/14/91 Gene Pizzetta
ERASE. 40M 5.70 40 4 32 3EC7 ERASE57 36 11/14/91 Gene Pizzetta

FILE Transient counterpart of ERA. Erases read/write files from command

]
]

The Computer Journal / #55

1.4: CON:, LST: and AUX: canbe used in
place of the destination file; a new “P”
option pages output to console or printer;
a new “H” option resets hi-bits and re-
moves control characters from thescreen;
the “I” option doesn’t have to be at the
end of the option list; new, more specific
error messages; more configuration op-
tions; ZSLIB HV routines are now used
in place of larger VLIB ones.

* CPD15 (ZSUS V3 #3)—Since ver-
sion 1.0, options have been added to 1)
include DU specs with filenames in the
CPDLIST output file, 2) output matching
filenames to a diskfile, and 3) suppress
console output. More configuration op-
tions have been added, changes to the
display and usage screen, bug fixes and
code optimization. CPD is also much
faster now that both directories to be
matched areloaded into memory. D21—
adds several new features; fixes some
long-standing bugs; now works under
vanilla CP/M.

* DATSTP19-—VLIB references have
been replaced withmuchshorter ZSLIB34
routines, keeping the executables to 6k
and under.

*+ ECHO14—correctsaproblem when
running under BYE; adds matching
RCPECHO, Type 3 and Type 4 versions,
and ZCNFG configuration.

* ERASES57—adds a Type 4 version;
the Type 3 version has been made CPM-
safe; the program banner is improved;
some code changes help keep the size to
4k.

« FA16A (ZSUS V3 #3)—FILEATTR
is a utility to quickly set, reset, or display
file attributes. It was originally distrib-
uted with ZSDOS and has since been
made compatible for use under ZSDOS,
ZRDOS, and CP/M2.2.Under ZCPR3, it
allows error flag setting, error handler
invocation, and an enhanced display.
FA16A adds much needed documenta-
tion.

* FILT81 (ZSUS V3 #2)—now checks
for ambiguous filenames; the display of
line count progress reports is now a con-
figuration option.

+ JUST13 (ZSUS V3 #2)—same
changes as made to FILT81.

*+ PRETTY31—cases of labels and
opcodes are now a command line op-
tion; adds a few SLR and ZMAC
pseudo-ops to the table; a bug fix, some
minor code tweeks.

* RCOPY21—corrects a bug in the
listfile parsing routine.

* UMAP18—correctsa problemwhen
running under BYE; otherminor changes.
* XFOR15(ZSUS V3 #2)—now prints
the “searching” message only when a

43

search Stnnglsgl ven, not after each HLP=Y line and prompts foxr erasure or read-only files.

entry duringsequential FOR file dis- CFG=Y Vs. 5.0 (05/84) by Richard Conn.
lays.
. }Z,SIYIBEM—adds switchable output PILT.COM 8.10 0 V302 4 30 0393 PILT8l 24 10/03/91 Gene Pizzetta
. d] bug fixes WP ZCPR3 rework of Irv Hoff's FILT7 tool which sets or expands tabs and
routines and m some bug * HLP=Y removes several types of unwanted characters in ASCII text, Wordstar
* ZTIME14—rereads the clock after CFG=Y documents or assembler source code files.
SEttil‘lgit;CO somepalserbugs; l1.1b 40 3 21 69CB HELPLSH 3 01/06/92 Rob Friefeld
: HELPLSH.COM . CB riefe
padds Type 3and Type 4 versions. NKP Belp program for SH va 1.1. -
ce orgen: y ’ HLP=Y
- SAVNDR14, SUB35, Z33IF16 CFG=N
Bruce continues to bri some of the JUST.COM 1.30 0 V302 4 32 A6A9 JUST13 41 10/03/91 Gene Pizzetta
. Tng - wP ZCPR3 rework of Irv Hoff’s tool to justify ASCII and WordStar text
older, butstilluseful, Z-System utilitiesup HLP=Y files. Full ccmmand line operation, DU support, error-flag setting,
to “modem” standards. CFG=Y quiet mode, and tranefers create datestamps under ZSDOS.
. InSUBSS5, Bruce has made some ambi- LT.COM 310 co 7 54 EESY LTI 64 12/16/91 Brian Murphy
housxmpmvementswhlleshllpreserwng LER Library Type can type normal, LZH-encoded, crunched or squeezed files
‘backward compatibility with scripts writ- HLP=N whether standalone or in a .LBR. Can extract/uncrunch any/all files
tenforSUBMIT, SUPERSUB, andplevious CFG=N at the same times. Adapted from Steven Holtzclaw’s LUXTYP (06/83).
Versions Offh”' ZCPR3 SUB series. Prob- MENU.COM 4.20 00 4 32 2437 MENU42 48 10/30/91 Bruce Morgen
ably most significant is the ability to read SHELL The ZCPR3 menu front-end processor. Shell which reads a .MNU file
SUB scriptsfmmastandard LBR file. Like HLP=Y and processes commands from it.
ZCNFG's .CFG files, .SUB files tend to be CPG=N
very short and quickly eat up disk space. NZTIM.REL 1.20 4 0 3 24 2678 NZTIMI2 43 01/27/92 Terry Hazen
It makes sense to bundle them into LBRs. PROG3 Library of Date/Time subroutines which allow data or pointers to data
SUB scriptscannow be searched in LBRs HIP=Y to allow utilities to do whatever necessary with Date/Time. Entirely
1) from the command line in the e CFG=N self-contained. Original (2/10/90) by Joe Wright.
manner as LX-"SUB - PDAT.REL 1.20 40 2 12 OF01 NZTIM12 43 01/27/92 Terry Hazen
[DIR:] LBRNAME]. TYP] PROG3 Library of routines which use NZTIM and SYSLIB routines to print
SUBN AME[.TYP]”-——O!‘ 2) by searching a HLP=Y various forms of Date and Time. Original (2/10/90) by Joe Wright.
CFG=N
user-patched library after the search fora
standalone SUB script has failed. PRETTY.COM 3.10 30 5 38 SCD5 PRETTY31 32 10/03/91 Gene Pizzetta
SUBINST.COM is pmvided to patch the PROG2 Standardizes the case of opcodes and labels in %80 and 8080 source

HLP=Y code. Based on Carrol Bryan’'s PRETTY23l. Preserves create date

name and location of this secondary li- CFG=Y stamps under ZSDOS. Configurable with ZCNFG.

brary. SUB35 also recognizes the

UNIx.style “o (enﬁm command line) PRNTXT.COM 1.60 0 V302 1 6 E39D PRNTXT16 26 10/05/91 Terry Hazen
ERR12 " 8YS Console/printer message utility program which creates "instant”
,P eter, Supp: (,)r's 234 1 mpat HLP=Y text display .COM files to the console or printer.
ible error handling, and observes the CFGN
/Z3ENV quiet flag.
Bruce's other updates include: PWD.COM 2.10 00 4 25 813E PWD21 48 11/12/91 Bruce Morgen
. PWD. 30M 2.10 30 4 25 A760 PWD21 48 11/12/91 Bruce Morgen
* MFNU‘Q._addf ‘3“‘*} support for PWD. 4OM 2.10 40 4 30 CEB4 PWD21 48 11/12/91 Bruce Morgen
Bndgeertchell s“ AT”background sYs Displays the names of DU and DIR names with paging.
timerand shrinks the tool back to its HLP=Y Vs 1.0 (03/84) by R. Conn.
1984 size of 4k. CFG=Y
* PWD2l—adds a Type 4 version; RCOPY.COM 2.10 00 4 29 E445 RCOPY21 24 01/11/92 Gene Pizretta
improves the program banner,uses FILE Copies a list of files between two directories.
the new ZSLIB video highlighting HLP=Y
.. CFG=Y
routines in place of the larger VLIB
routines. REMIND.COM 1.50 30 5 39 3730 REMIND1S 38 01/26/92 Terry Hazen
[SAVNDR14—implements aType4 DATE Appointment reminder utility for ZCPR3 and ZSDOS with clock. Will

Py HLP=Y display and optionally print a sorted and paged list of dated appt
version; adds the T)} and load CFG=Y reminder lines with optional time entries from a text datafile.

address to the program banner; con-
tains some minor code changes. RENAMZ.COM 1.90 30 5 33 9FD3 RENAMZ19 64 11/08/91 Terry Hazen
¢ Z33IF16—uses thenew ZSLIB video FILE Enhanced 280 file renaming utility for CP/M 2.2 and ZCPR3 CCP's
. . . . HLP=Y running under CP/M 2.2, Z80DOS, ZRDOS, and 2SDOS. Companion to
highlighting calls in place of VLIB CPG=Y ACOPY, DD, ERAZ, and UNERAZ. Va 1.0 (04/87) by Terry Hazen.

ones. Twoother developmentshave

to be mentioned before closing out SAVNDR.COM 1.40 00 2 12 5A49 SAVNDR14 12 11/22/91 Bruce Morgen
. t . SAVNDR.30M 1.40 30 2 12 00C2 SAVNDR14 12 11/22/91 Bruce Morgen
this rather I ,hy column: SAVNDR. 40M 1.40 4 0 2 16 1EDY SAVNDR14 12 11/22/91 Bruce Morgen
Howard Goldstein has reworked the NDR Writes a reloadable (by LDR) copy of the resident Named Directory
Z-System Help tool into a version which HLP=Y module to a disk file.
will read LZH-encoded help files (HYP). Cra=N
HELPLZH.LBR (ZSUS V3 #3) contains SCOPY.COM 0.80 4 0 15 120 D6DB SCOPYOS 26 10/21/91 Rob Friefeld
HELPCH.COM, which handles FILE Screen-oriented file copy utility. Displays source and destination
standalone files, and LHH.COM, which HLP=Y directories in vertical windows. ZF-like commands. Supports file
handles files within libraries CFG=Y selection and copy by datestamp. Extended TCAP required.

44 The Computer Journal / #55

SUB.COM 3.50 oo 4 32 7379 SsUB35 24 01/30/92 Bruce Morgen
SYS Replacement for the SUBMIT program provided with CP/M. Provides
HLP=Y nestable SUBMIT runs, interactive entry, and user customization.
CFG=N Vs. 1.0 (10/81) by Richard Conn. From SuperSUB 1.1 by Ron Fowler.

SUBINST.COM 3.50 00 1 8 7ED5 SUB35 24 01/30/%2 Bruce Morgen
sYs Install program for SUB.COM vs 3.5.
HLP=Y
CFG=N

TCSELECT.COM 3.00 0 0 5 35 780B TCSELE30 13 12/04/91 Brian Moore

8YS Allows user to interactively review the contents of a Z3TCAP.TCP
HLP=Y file and select a terminal from it. Supporte extended TCAPs
CFG=N compatible with the Version 4 libraries.

UMAP . COM 1.80 00 2 16 903C UMAP1S 23 10/10/91 Gene Pizzetta
UMAP . 30M 1.80 30 2 16 D4A5 UMAP1S 23 10/10/91 Gene Pizzetta
UMAP . 40M 1.80 40 3 22 EC57 UMAP18 23 10/10/91 Gene Pizzetta

& DIR Shows which user areas have files and how many directory entries those

HLP=Y files use. Can also show: total nbr of entries used, those still
CFG=Y free, free disk space, as well as a list of empty directories.

XFOR.COM 1.50 0 V302 6 41 2343 XFOR1S5 44 12/01/91 Gene Pizzetta
BBS Z-System FOR utility for displaying "- = ” delimited file catalogs.
HLP=Y Command line source file specification. Numerous configuration
CFG=Y options can be set with ZCNFG.

Z33IF.COM 1.60 30 4 28 €BOE Z33JIF16 3% 10/13/91 Bruce Morgen
233IP.30M 1.60 30 4 28 90C9 2Z33IF16 39 10/13/91 Bruce Morgen
Z33IF.40M 1.0 40 4 32 742E Z33IF16 39 10/13/91 Bruce Morgen

sYs Adaption of COMIF.COM for ZCPR3.3.

HLP=Y

CFG=N

ZBIB.COM 1.00 00 8 61 4EOB ZBIB10 18 11/29/91 Joe Mortensen
DBASE Bibliographic database manager derived from ZDB.
HLP=Y
CFG=Y

ZCNFG.COM 2.10 4 V212 8 62 FB96 ICNFG21 115 11/07/91 Al Hawley
sYs Universal confiquration utility which configures option data in
HLP=Y executable files. Uses .CFG overlay file.

CFG=Y

ZDB.COM 1.80 (] 8 64 D1C2 ZDB18 51 01/30/92 Joe Mortenson
DBASE Small, fast name and address file manager with built-in label and
HLP=Y envelope addressing features. NZTCAP and VLIB4D support.

CFG=Y

ZDT.COM 1.20 00 8 59 A635 ZDT12 20 01/27/92 Joe Mortensen

ZDT+.COM 1.20 00 8 62 ED48 2DT12 20 01/27/92 Joe Mortensen
DBASE Z-System Day Timer, a daily planning calendar derived from ZDB.
HLP=Y Automatically reads real-time clock and displays current day’s
CFG=Y schedule. Requires ZCPR3.0+ and extended TCAP. Version for Z3PLUS.

2P10QD4+.COM 1.0¢
ZP10QD5+.COM 1.0q
ZF10QD5.COM 1.0q
ZP10QR4+.COM 1.0q

15 119 4BOE ZF10Q 118 01/14/92 Rob Friefeld
15 119 94ES ZF10Q 118 01/14/92 Rob Friefeld
15 115 537C 2F10Q 118 01/14/92 Rob Friefeld
15 119 04BB 2F10Q 118 01/14/92 Rob Friefeld
ZF10QR4.COM 1.0qg 15 115 BD22 2ZF10Q 118 01/14/92 Rob Friefeld
ZF10QR5+.COM 1.0q 3 15 119 1ED9 2ZF10Q 118 01/14/92 Rob Priefeld
FILE Enhanced version of VFILER (follow-on to VF42B) designed to take
HLP=Y advantage of ZCPR3.3+ facilities. Versions for 4/5-cols, dim/
CFG=Y reverse video, DateStamper support. Vs 1.0 (1/1/87) by Jay Sage.

W W W ww
(=R = = = R =]

(~]

ZSLIB.REL 3.40 4 29 228 1C4E 2ZSLIB34 84 10/09/91 Gene Pizzetta

ZSLIBS.REL 3.40 L) 27 211 B72C ZSLIB34 85 10/09/91 Gene Pizzetta
PROG1 Assembly language routines to assist programmers in handling date-
HLP=Y estamp maintenace under ZSDOS, Z3PLUS, and CP/M Plus. Microsoft
CPG=N REL and SIR formats.

@

ZTIME+.COM 1.40

2TIME+. 30M 1.40

ZITIME+.40M 1.40

27 874C ZTIMEL4 4 10/10/91 Gene Piszzetta
27 691A ZTIME1l4 40 10/10/91 Gene Pizzetta
34 4B58 ZTIME14 40 10/10/91 Gene Pizzetta
ZTIME.30M 1.40 27 07C0 ZTIME14 40 10/10/91 Gene Pizzetta
ZTIME.40M 1.40 35 D986 ZTIMEl4 40 10/10/91 Gens Pizzetta
ZTIME.COM 1.40 0 4 27 CACA ZITIMEl4 40 10/10/91 Gene Pizzetta
DATE A hardware independent clock utility for setting or displaying the
HLP=N date and time under 2SDOS or Z3PLUS. Options include the ability to

w W wwo
LI R

The Computer Journal / #55

Rob Friefeld has released an update to
ZFILER (ZF10Q) with the following en-
hancements: 1) the ability to filter VIEW
and PRINT output (highbitsareremoved,
only alphanumerics, CRs, and LFs are
printed, and TABs are expanded); 2) the
ability to remember all the file tags on
return from a Z command or macro run
(mentioned above). The file list is written
to a temporary disk file (ZFILER.TAG, in
a configurable directory), and automati-
cally read back. 3) the ability to set the
Group Tag/Untag and Wild Tag/Untag
towork on the entire ring, or just from the
file pointer (Group Reverse always works
on the entire ring). List macros now soft-
tag files just like regular group macros.

Z Message Base

Question: What is the acceptable way
of handling the quiet flag? Answer. | usu-
ally handle the quiet flag this way:

a. The program has a configuration
byte that allows setting it to default to
quiet mode.

b. If the quiet flag is set, the program
defaultstoquiet mode nomatter how the
configuration byte is set.

c. Thecommand line Q option toggles
whatever is the current default, whether
the default has been set by the configura-
tion byte or the quiet flag.

Many programs | have released use
this method, including DATSTP,
CONCAT, etc. (Gene Pizzetta, Z-Node #3,
2/2/92)®

"Reading made Don
Quixote a gentlemen, but
believing what he read
made him mad.”

-George Bernard Shaw

J w The Spirit of the Individual Made This Industry

Back Issues

Telephone Orders: (800) 424-8825 / (908) 755-6186, 24 hours

losuss 1,2, 3, 4 ony

3 ormaone, $1.50 sach posipeid h the US
$3.00 postpaid aimall outsids US.

laaue Number 1

«RS-232 Inteviace Purt 1

« Telacompuiing wih the Apple |
 Beginnar's Column: Geliing Sterted
* Buld an "Epram”

Insus Number 2

« Fle Tanler Programs for CPM

*RS:222 Intertace Part2

* Buld Hardwese Print Spocler Part 1

* Feview of Floppy Disk Fomals
 Sending Mores Code with an Apple I

» Baginner's Cohumn: Basic Concepls and Formules

lssue Number 3.

« Add an 8087 Math Chip 10 Your Dual Procsssos Board
« Buld an AD Converter for Appls it

« Modems for Micros

*The CPM Operaling Systom

* Bulld Hardware Print Spocler: Part2

Mul\eOPMUuFummnM
« Buld Hardwere Print Spooler: Part3
[wmmm:msmw

+ Parallel interiace for Apple I Game Port

+"The Hacker's MAC: A Latisr from Les Felssnstsin

+ 5100 Graphics Screen Dump

+The LS-100 Dlek Simulslor KRt

+ BASE: PatSk

«inriacing Tips & Troublee: Communicating with
Telaphone Tone Contol, Part 1

lssue Number 20:

« Deaigring an 803 SBC

«Using Apple Graphics from CPAL Tubo Pascal
Conirols Apple Graphics
+Sckdering & Other Skange Tales

*Buld an S5-100 Floppy Diek Controller; WD2797
Contoler for CPM 88K

lasue Number 212
* Extending Turbo Pascat Cusiomize wih Procedures &
Funclions

+ Unsoldedng: The Arcans At

+ Analog Deln Acquisltion & Controt: Connecting Your
Compulerfo the Resl Workd

+ Programing the 05 SBC

Issye Number 22;
 NEW-DOS: Whie Your Own Operaing Sysiem
+Varisbily i the BDS C Standerd Library

+The SCS! interface: Introduciory Column

« Using Turbo Pascel ISAM Fles

+ The Ampero Lis Board Column

lssue Number 23:

+C Columt Fiow Contiol & Program Struckwe

+The Z Cokume: Qlling Sterted wih Direciories & User
Anes

+The SCS! Inkeriace; Inroduction 10 SCS!
*NEW-DOS: The Conecle Commend Procsssor

* Edling the CPM Operating System

+INDEXER Turbo Pascal Program 1o Cresle an Index
+The Ampro Lille Board Column

lasue Number 24;

+Selscing & Bulding a Sysiem

+The SCS! intertane: SCS! Command Prolocol

« introduciion 10 Assembie Code for CPM

*The C Column: Schwere Text Flers

« Ampeo 188 Columrr. Inshaling MS-00S Scwese

*The Z-Coumn

*NEW-DOS: The CCP intemal Commands

« ZTme-1: A Rsal Time Clock for the Ampro Z-80 Lite
Boad

o NP /

'///,{({;{(I///I/////l 19417,

/ / , ‘y N ' ~
i i ////

(/r////tu Ill/////’///’

4;/,1// ///////////

lt’l’lil
issye Number 26;
* Bus Syslems: Selecing a Syslem Bus
« Using the SB180 Real Time Clock
*The SCS! interiace: Solware for the SCS! Adapler

Ilsaue Number 27:

* 88000 TiyGiant: Hawthome's Low Cost 16-bt SBC
and Operating System

+ The Art of Source Code Genesation: Disassembling Z-

80 Sohware

Loop
* The C Column: A Graphics Primiive Package
* The Hitachi HD84180: New Lile for 8- Systome
« ZS1G Comer: Command Line Generators and Alleses
* A Tulor Program i Forth; Wrting a Forth Tukr in Forth
* Disk Parameters. Modliying the CPM Disk Parameler
Block for Foreign Disk Formals

lasue Number 28:

« Starting Your Own BBS

« Buld an AD Converter for the Ampro | ie Board

* HDB4160; Seling the Wak Staies & RAM Fefresh
using PRT 8 DMA
Using SCSH for Feal Time Contrdl

« Batter Sofware Fler Design

« MDISK: Adding a 1 Meg RAM Disk to Ampro Lite
Board, Part 1

«Using the Hitachi hd84180: Embedded Procesecr
Design

* 68000; Why use a new OS and the 680007

« Detecting the 8067 Meth Chip

* Floppy Disk Track Struchre

*The ZCPR3 Comes

* Double Floppy Controller

+ ZCPR3 IOP for the Ampro Lile Bowd

+ 3200 Haclers’ Language

*MDISK: Adding a 1 Meg RAM Disk 1o Ampro Lille
Board, Part 2

* Non-Presmpiive Mulliaeking

* Sohware Timers for the 66000

+1liput 2-Node

*The 2GPR3 Comer

*The CPM Comer

Issue Number 31;

« Using SCS! for Generaltzed 1O

+ Communicaing wih Floppy Disks: Disk Pacameters &
thelr variations

« XBIOS: A Replacament BIOS for the SB180

+K-06 ONE and e SAGE: Demysiliying Operaiing

Syslems
* Remoale; Designing a Remoke System Program
« The ZCPR3 Comer, ARUNZ Documentstion

*Designing Operaling Systems: A ROM based 0 for
the 281

+ Advanced CPM: Boosting Perormance

*Systematic Elmination of MS-DOS Flles: Part 1,
Deisting Root Direclories & an In-Depth Look at the
FCB

* WordStar 4.0 on Generic MS-DOS Sysiems: Paiching
for ASCH Terminal Baged Sysisme

+K-0S ONE and the SAGE: System Layout and
Herdware Configuraion

+The ZCPR3 Comer: NACOM and 2CFR34

Issye Number 33

«Data File Conversion: Writing a Filler fo Convert
Forelgn Fle Fomais:

« Advanced CPM: ZCPRIPLUS & How to Wil Self
Relocaling Code

* DataBase; The First In a Series on Dela Bases and
Information Proceesing

+SCSi for the S-100 Bus: Ancther Example of SCSi's
Versallly

« A Mouge on any Herdware: implementing the: Mouse
on & 280 Sysem

*Systematic Elmination of MS-DOS Flles Part 2,
Subdireciories & Extendad DOS Services

« 2CPR3 Comer: ARUNZ Shells & Paiching WordStar
40

I1ssue Number 34;

+ Developing a File Encrypion System.

+Database: A continuation of the data base primer
gorien

*A Simple Mukitasking Executive; Designing an

Type 4 programs.

+ New Microconirollers Have Smarts: Chips withh BASIC
or Forth in ROM are easy 10 program.

« Advanced CP/M: Operating system extensions o
BDOS and BIOS, RSXs for CPM 2.2,

+ Macintosh Deta Flle Conversion In Trbo Pascal.
 The Computer Comer

lasye Number 35:

« Al This & Modue-2: A Paeca-ile alemative with
scope and paramelsr passing.

*A Short Course in Source Code Generation:
Disssssmbing 5068 solware o produce modiieble
assambly source code.

* Rsal Computing: The NS32032.

+S-100: EPROM Bumer project for S-100 herdware
hackens

+ Advanced CPM: An up-to-date DOS, plus detads on
fio siructure and formas.

+REL-Style Assembly Language for CPM and Z-
System. Part 1: Selecing your assembler, frniker and

dabugger.
+ The Compuler Comer

lssue Number 38;

« Inform alion Engineering: Inroduction.

« ModulrZ A st of reference boole.

« Tempersie Measurement & Controt Agriculural
compuler application.

* ZCPR3 Comer: 2-Nodes, Z-Plan, Ameirand compuler,
and ZFLE.

* Real Compuling: NS32032 hardware for expermenter,
CPUs In series, solware oplions.

* SPRINT: A review.

* REL-Siyle Aspembly Language for CPM & ZSystams,

2

pat
* Advanosd CP/M: Ervironmental programming
* The Computer Come.

lssye Number 37;
*C Pointers, Aays & Structues Made Easler. Part 1,

Pointers.

«ZCPR3 Comer. Z-Nodes, paiching for NZCOM,
ZFLER

«Information Engineering: Basic Concepts: flekds, fleld
defintion, clent worksheots.

+Shells Using 2CPR3 named shel veriables fo skore
date vasiables.

¢ Resldent Programe: A detalled look at TSRs & how
they can lead 1o chaos,

« Advanced CPA: Raw & cocled conecle 1O

* Real Compuling: The NS 32000.

«ZSDOS: Anslomy of an Operaling System: Part 1.
*The Computer Comer.

issue Number 38:

+ C Math: Handling Dolers and Canis Wih C.

« Advanced CAM: Baich Processing and a New ZEX.
*C Poirters, Arays & Structures Made Easler; Part 2,

Araps.

*The Z-System Corner: Shells and ZEX, new Z-
Node Central, system securly

« information Enginaering: The portable informtion Age.

+Computer Alded Publishing Inroduction % publishing
and Dask Top Publishing.

*Shells: ZEX and hard disk backupe.

+Real Computing: The National Semiconductor
NS3200C

+ ZSDOS: Analomy of an Operating System, Pt 2.

issue Number 39:
*Programming for Performancex Aseembly Languege
achniques.

+Computer Aided Publishing: The Hewlett Packard
LaserJet

*The Z:Sysiem Comer: System enhancements with
NZCOM.

« Generaling Laser.jet Forrts: A review of DighForis.
Adwmsd CPM: Making old programs Z-Syslem

C P&'lus, Arays & Structures Made Easier. Part
Swvuckres.

+Shells: Using ARUNZ aiis wih ZCAL

*Real Computing: The National Semiconductor
NS3200C

+The Computer Comer.

Issus Number 40;

+ Programming the Lasecet: Using the escape codes.

* Beginning Forth Colum introduction.

*Advanced Forth Column: Varant Records and
Modules.

*LINKPRL: Generaing the bk maps for PRL fles from &
FEL e

+WordTech's dBXL: Wring your own cusiom designed
bueiness program.

+ Advanced CPM: ZEX 5.0The machine and the

inguage.
+Programming for Performance: Asssmbly language

fechniquea.

*Programming InputOutput With C. Keyboard and
screen functions.

*The Z-Syetem Comer; Remole access systems and
BOS C.

+ Real Compuling: The NS320)X

* The Computer Comer.

Issue Number 41;

« Forth Colummc ADTs, Object Orienied Concepks.
*improving the Ampro LB: Overcoming the 88Mb hard
deve Imi

* How 10 arkd Dat Structures in Forth

« Advanced CP/M: CPM I8 hackar's haven, and Z-
System Command Schedule.

*The ZSysiem Comer. Extended Mutiple Command
Line, and alesee.

* Programming disk & prinker funciions w/C.

* LINKPAL: Making RSXas eany.

« SCOPY: Copylng & series of urvelaled fles.

«The Computer Comer.

The Computer Journal / #54

lasue Number 42:
“Dynamic Memory Allocation: Allocating memory at

runiime wih examples in Forth.

« Using BYE with NZCOM.

«C andthe MS-DOS Screen Character Atvibutes:

« Forth Columi: Lisis and object orlented Forth.

*The Z-Systam Comer. Genis, BOS Z and Z-System
Fundamentais.

*68706 Embedded Controller Applcation: An axample
of asingle-chip microconirolier application.

* Advanced CPM: PluPerfect Wrler and using BDS C
‘wthREL fles.

« Real Compuling: The NS 32000,

*The Computer Comer

Issue Number 43;
« Standardize Your Floppy Disk Drives.

* ANew History Shel for ZSysiem.

* Hesth's HDOS, Then and Now.

*The ZSysiem Comer. Sohwere update service, and
cusiomizing NZDOM.

* Graphics Programiming Wih C: Graphics*

oulines for the IBM PC, and the Tubo C graphics

forasy.

*Laoy Evaluaion: End the evaluation as soon ae the
requl is imown.

*5-100: There's 5t e In the old bus.

* Advanced CPM; Pasaing paramelers, and complex
T0r necovery.

* Real Computing: The NS32000.

« The Computer Comer.

lsaue Number 44;

* Animation with Turbo G Part 1. The Basic Tools.

* Mullaakdng in Fortie New Micros FE8FC11 and Max
Forh

« Mystories of PC Floppy Disks Revealok FM, MFM,
andthe vsted cable.

* DosDisk MS-DOS disk format emuletor for CPM.
+Advanced CPM: ZMATE and using lookup and

Issuo Number 45;

* Embekied Systems for the Tenderfoot: Getiing started
wihthe 8031,

* The Z-Sysiem Comer: Using scripts with MEX.

*The Z-System and Turbo Pascal Patching
TURBO.COM to access the Z-Sysiem.

*Embedded Applications: Designing a 280 RS-232
communicalions gateway, part 1.

« Advanosd CPM: String searches and tuning Jefind.

« Animation with Turbo C: Part 2, screen interactions.

" : ’ The ngputer Journal
The Spirit of the Individual Made This Industry

Back Issues

Sales limited to supplies in stock.

* Bulld a Long Distance Printer Driver.
«Using the 8031's buik-in UART for serial
cominunications.

* Foundational Modules in Moduia 2.

+The Z:System Comer: Patching The Word Plus spel
checher; the ZMATE macro et edikor,

« Animalion wih Turbo C: Tet in the graphics mode.

« 200 Communicalions Galeway. Prololyping, Counter/
Timers, and using the 230 CTC.

comlusumummumw

+ Z-Systam Comer. ZMATE Macro Language

* Uaing 8031 intemupis:

*T-1: What R is & Why You Need 1o Know

« ZCPR3 & Modula, Too

« Tips on Using LCOs: Inkerfacing 1o the 88HCT05
+Real Camputing: Debugging, NS32 Muli-psking &
Distributed

+ Long Distance Prinker Driver: correction

« R0BO-S0G 90

« The Computer Comer

lssue Number 48;

* Faet Math Using Logarlhms

* Forth and Forth Assembler

* Module-2 and the TCAP

* Adding a Bemoull Drive 0 a CPM Computer (Bulding
a SCH! Intertace)

* Review of BOS 7"

* PMATE/ZMATE Macros, Pt 1

* Real Compuiing

+ ZSysiem Comer:. Paiching MEX-Plus and TheWord,
Using ZEX

+ Z-Bost Solware

* The Computer Comer

lssue Number 49;

* Computer Network Power Prolection

* Floppy Disk Alignment wATXES, Pt 1
 Motor Corrol with the F88HC 11

* Conlroling Home Heaiing & Lighting, Pt 1
« Gefling Started In Assembly Language
+LAN Basics

* PMATE/2MATE Macros, PL 2

* Real Computing

+ Z-System Comer

+ 7-Best Sohwere

* The Computer Comer

lasue Number 50;

*Offoad a System CPU with the Z181

+ Floppy Disk Algnment w/HTXEB, Pt 2
+Mator Confrol with the FG8HC11

Controling Home Healing & Lighting, L 2
Gefling Started in Assembly Language Pt2

+Local Avea Networks

«Using the ZUPR3 I0P

* PMATE/ZMATE Macros, Pt 3

« Z-Sysiem Comex, PCED

«Z-Best Sofware

* Real Computing, 32FX16, Caches

*The Compuler Comer

lssue Number S1;
* In¥oducing the YASBEC

*Floppy Disk Aignment w/RTXEB, Pt 3

* High Speed Modeme on Eight Bk Systeme

*AZ8 Tallexr and Host

*Local Avea Networks—Ethemet

* UNIX Connecivity on the Cheap

*PC Hard Disk Parttion Table

+ A Short Infroducion %o Forh

+Stepped Inference: A Techniqus for Inteligent Real
Time Embedded Control

*Real Computing: the 32CG180, Swordfish, DOS
Command Processor

* PMATE/ZMATE Mecros

* Z-System Comer, The Trenton Fesiivel

* Z-Best Saftware, the ZYHELP System

*The Compuler Comer

lssye Number 52;
*YASBEC, The Hardware

* An Arbivary Wavelorm Generalor, Pt 1

*B.Y.0. Assembier...in Forth, Pt 1

*Getling Staried in Assernbly Language, Pt 3
*The NZCOM IOP

+Servos and the F8BHC11

* Z-Syshom Comer. Programming for Compatibilty
+ Z-Best SoRware

* Real Computing, X10 Revisted

* PMATE/ZMATE Macros

» Conlroling Home Heatting & Lighting, Pt. 3
+The CPU260, A High Performance Single-Board

Compuler
*The Computer Comer

issue Number $3:

* The CPU280, Hardware design

« Local Area Networke—Broadband cabling

* An Arblsary Wavedorm Generator, Pt 2

+ Real Computing, RBOCs, C Sickness, Mink

« Zed Fest 91

« Z-System Corner: German User Groups, Virual BIOS,
More Programming for Compelibilly

* Assembling Language Programming: implementing

*The N2COM 10P: General purpose IOP loader
* Z-Best Solware, Spotight on Gene Pizzetta

* The Compuer Comer

lssue Number 54:

* Z-System Comer; Ten Years of ZCPR
*B.Y.0. Assombier in Forth

* Local Area Networks: Bridges and Routers

* Advanced CPM: VO Redirection in CPM Pus
mmaw-ﬂlmPhﬁum

+ Hardware Heaven: Dallas Smartwatch, Data books
*What Ziog Never Told You about the Super8

+ A Arblrary Wavelom Generator, Pt 3.

* The Development of TDOS

* The Computer Comer

* Roal Computing: The NS32000,
* The Compuler Comer,
(uU.s. Foreign Foreign Total Name: N
Subscriptions (Surface) (Airmail) .
Tyear (6 issues) $18.00 $2400 $38.00 Company:
2 years (12 issues) $32.00 $44.00 $72.00 Address:
Back lssues $4.50 ca. $6.00 ea.
6 or more $4.00 ea. $5.50 ea.
Back Issues Ordered:
My interests:
Subscription Total
Back Issues Total
Order Total 'Checks must be in US funds, drawn on a US bank.
Method of Payment: *Sales limited to suppliies in stock. Subject to prior sale.
__Visa _MC __Discover
—JCcB “DinersCiub _Carte Blanche Th m r Journal
EuroCard Check’ Money Orde
AcctNo: — = P.0. Box 12, S. Plainfield, NJ 07080-0012
Signature: (800) 424-8825 / (908) 755-6186
_ J
The Computer Journal / #54 47

The Computer Corner

By BIll Kibler

A new year has started and with it a few new leafs are being
turned over by myself. Hopefully | am getting ahead of things as
Iwillbe moving houses again soon. WhatI want tocover this time
is some understanding about a few key words I use. They are
important words and as such | feel a whole article on them is
needed.

READABILITY

is my first word and is not what most users understand it to
mean. To me to be readable, in the case of a manual, is not just
covering all the topics, but educating the reader as well. To be
readableit musthaveaclearly defined structure. The reader needs
tobeable tofind items of interest quickly. The structure must clear
enough that a reader can see the structure and start using it
immediately.

This topic is fresh with me as | have been spending a large
amount of time with one of our technical writers. We have a new
product going out and thus a new manual. They had takenan old
manual and just changed a few key words and items. Well, that
was until it hit my desk for review. To say the red ink flowed over
many pages would be an understatement. [feel the writer had
never had anybody in the company ever really review one of his
manuals before.

What am I changing to make the manual more readable? The
first problem was a lack of structure. The installation section ran
on forever and intermixed topics and instructions. The new
manual now has a clear introduction that describes terms used
and how things work. That brings the reader up to the point of
knowing what and why the remaining steps are needed. Those
steps now are broken into separate chapters or sections that
coincide with a logical grouping of needed actions.

In short, the document lacked any clear structure. It was
almostimpossible tofind agiven topic withoutsome huntingand
then the why or how of the function might not be apparent. That
“how and why” is actually very important as it helps the reader
weigh the information for relevance to their needs. I remember
readingonesectionand thinkingwe had already covered it, when
I suddenly discovered the topic was actually different. The prob-
lem was two terms that were very close to each other.

I can not complain about use of terms enough. We all have had
troubles with acronyms. Those wonderful two and three letter
statements that mean nothing and are never explained. Manuals
are full of them and my complaint is they do not get explained
often enough. Do it once or twice a section at least. But another
problem with terms is use of similar or repetitive terms. In our
example was the overly used term “file”.

I am sure we all have seen the term file used 10 or 15 times in
one paragraph. How many of you can keep track of which filewe
are talking about. In our manual it wasn’t even a file, but really a

48

list of lists stored in a file structure. We have multiple indexes into
theselists which determine which file gets sent towhere (see even
describing the problem gets confusing). The manual referenced
the list as “XX file” and then said it loaded files from it. Not only
was it confusing but inaccurate as well. The solution involved
explaining that it was a list. Then explaining how the list is
multiply indexed. Lastly we showed the relationship betweenthe
indexes and the file name that was ultimately loaded.

STRUCTURE

I could go on with the manual problems and pick over lots of
the fine points. The objective here is to get you to save time and
money when preparing yourown manuals. I say this after having
seen a friends manual he product for his new product. His first
problem was size, over an inch of standard letter size pages. The
printing cost are about $15 each and the labor cost had he paid for
them are enormous. The reason I feel it was wasted was lots of
extra work was performed that will not return him any buyers.

Now writing to sell is not the best way to write a manual.
Writing with a clearly defined audience and structure will how-
ever produce a readable and marketable item. How so? Over the
years | have used the structure that says a manual should be
broken into a beginners, intermediate, and advanced section. |
find that idea is sound no matter which group is using the
document. Salesliterature, fliers, and each section of amanual can
also use this structure. We start a sales pitch with the old adages
of tell them “WHO, WHAT, and WHY”.

[have changed the who, what, why, to introduce it, explain it,
and show it off. These really are still my favorite structures of
beginner, intermediate, and advanced. Remember that whenever
you start a new topic or look at a new product your start as a
beginner. You learnenough about it to then start asking questions
about what it will do for me. At that point you have passed into
the intermediate state where we then start asking question like
“why can’t1 do this or that”.

My suggestion tomy friend was change his structure. Most of
the information has already been written, it just needs to be
restructured. I feel also that as he restructures hewill see that many
items and topics are covered more than once. Once the structure
is clearly outlined it also makes it possible to judge the content of
sections. Toooften] find whole subsections thatjust donotbelong
either in that location or in the manual.

Whentalkingabout sales, I like the clearstructuringasitallows
forasingle section (usually thebeginnerssection) tobe pulled out
and shipped to would be buyers. That may also help you under-
stand theimportance of whatabuyer looks forinamanual.[have
my own items I check for before buying as I am sure you do to. I
find however that most people check out items like indexes, table

See Computer Corner, page 19

The Computer Journal / #55

EPROM PROGRAMMERS

Cross-Assemblers «iowssssow
Stand-Alone Gang Programmer $750.00 Slmulators as low as $100.00

Completely stand-alane or PG driven C rOSS' Dlsasse m ble rs as low as $100.00
S hogaitol AN DeveloPer Packages

" 8 ZIF Sockets for Fast Gang

W walLogramming and Easy
O . SplitEING

“ o 8 o e

User upgradable to 32 Megabit as low as $200.00(a $50.00 Savings,
.3/.6" ZIF socket, RS-232, R
Parailel In and Out i A New Pro]ed
« 32K internal Flash EEPROM for easy Qur line of macro Cross-assemblers are easy to use and full featured,
firmware upgrades including conditional assembly and unlimited include files.
* Quick Pulse Algorithm (27256 Get It To Market--FAST
in 5 sec, 1 Megabil in 17 sec.) Don't wait until the hardware is finished to debug your software. Our
2 year warranty Simulators can test your praogram logic before the hardware is built.
Made in U.S.A. NO SOUI’CE'

Technical support by phone
Complete manual and schematic
Single Socket Programmer also
available. $550.00

Aminor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

.« ® e s

+ Splitand Shuffle 16 & 32 bit Set To Go
« 100 User Definable Macros, 10 User Buy our developer package and the next time your boss says "Get to work.",
Definable Configurations you'll be ready for anything.
s Intelligent Identifier Quality Solutions
* Binary, Intel Hex, and Motorola § PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,
20 Key Tactile Keypad (not membrane) 20 x 4 Line LCD Display BROAD RANGE OF SUPPORT
o Currently we support the following microprocessor families (with
Internal Programmer for PC $139.95 more in development):
New Intelligent Averaging Algorithm. Programs 64Ain 10 sec., 256in 1 min., 1 Meg (27010,011}in2min. 45 sec., Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
2 Meg (27€2001) in 5 min. Internal card with external 40 pin ZIF. 21t. Cable 40 pin ZIF Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
g P Hitachi 6301 Motorola 6809 MOS Tech 6502 WDG 65C02

* Reads, verifies, and programs 2718, 32, 32A, 64,
B4A, 128, 128A, 256, 512, 513, 010, 011, 301,
2702001, MCM 68764, 2532

Automatically sels programming voltage

Load and save buffer to disk

Binary, Intel Hex, and Motorola § formats
Upgradable lo 32 Meg EPROMs

No personalily modules required

1 year warranty = 10 day money back guarantee
Adapters available for 8748, 48, 51,751, 52, 55, Newport News, VA 23606

B ot r 100 s remory s oy (804) 873-1947 FAX: (804)873-2154

Rockwell 65C02 Intel 8080,85 Zitog Z80 NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develoﬁpment Products Group
716 Thimble Shoals Blvd, Suite E

e s o 8 o s o

¢ Madein USA.

NEEDHAM'S ELECTRON |cs Call for more information
4539 Orange Grove Ave, » Sacramento, CA 95841 _ 9&62)1962947-28293670
Mon. - Fri. 8am - 5pm PST cop ©® E (916) 972

UE William P Woodall - Software Specialist \]

Custom Software Solutions for Industry:

Industrial Controls Hardware Interfacing
Operating Systems Proprietary Languages
Image Processing Component Lists

Custom Software Solutions for Business:

Order Entry Point-of-Sale

Warehouse Automation Accounting Systems
Inventory Control Local Area Networks
Wide Area Networks Telecommunications

Publishing Services:

Desktop Systems Format Conversions
Books Directories
CBT Interactive Video

33 North Doughty Ave, Somerville, NJ 08876 <« (908) 526-5980

A
\

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

(New Lower Prices on Many ltems!)

e Automatic, Dynamic, Universal Z-Systems: Z3PLUS for CP/M-Plus computers,
NZCOM for CP/M-2.2 computers (now only $49 each)

¢ XBIOS: the banked-BIOS Z-System for SB180 computers ($50)
o PCED — the closest thing to Z-System ARUNZ, and LSH under MS-DOS (350)
e DSD: Dynamic Screen Debugger, the fabulous full-screen debugger and simulator ($50)

e ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

o Plu*Perfect Systems

- Backgrounder ii: CP/M-2.2 multitasker (now only $49)
- 7ZSDOS/ZDDOS: date-stamping DOS (375, $60 for ZRDOS owners,

$10 for Programmer’s Manual)

- DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

- JetFind: super fast, extemely flexible regular-expression text file
scanner (now only $25)

e ZMATE: macro text editor and customizable wordprocessor ($50)
¢ BDS C — complete pkg including special Z-System version (now only $60)
e Turbo Pascal — with new loose-leaf manual ($60)

o ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
($50 with documentation on disk, $70 with printed manual)

e SLR Systems (The Ultimate Assembly Language Tools)
— 780 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)

mnemonics, and general-purpose linker SLRNK

— TPA-based ($50 each tool) or virtual-memory ($160 each tool)
¢ NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

- MEX-Plus: automated modem operation with scripts ($60)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling: 33 USA, $4 Canada per order; based on
actual cost elsewhere. Check, VISA, or MasterCard. Specify exact disk formats acceptable.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

